AP Calculus BC

Unit 9 – Sequences & Series (Part 1)

Day 5 Notes: Alternating Series

An alternating series has terms that alternate between positive and negative:

$$\sum_{n=1}^{\infty} (-1)^n a_n \text{ or } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

For example, this is a common alternating series:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^n}{n} + \dots$$

ALTERNATING SERIES TEST

Let $a_n > 0$. The alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ and $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converge if both of these conditions are met:

$$1. \lim_{n\to\infty} a_n = 0$$

2. $a_{n+1} \le a_n$ for all n (each term must be \le the preceding term).

Examples: Determine convergence or divergence.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

$$Q_n = \frac{1}{n}$$

$$\lim_{n \to \infty} \left(\frac{1}{n} \right) = \frac{1}{n} = 0$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^2 + 1}$$

$$a_n = \frac{n^2}{n^2 + 1}$$

$$\lim_{n\to\infty} \left(\frac{n^2}{n^2 + 1} \right) = 1 + 0$$

REMAINDER THEOREM FOR ALTERNATING SERIES

If a convergent alternating series has R_N as the remainder obtained by approximating the sum of the series S with S_N , then

$$|R_N| \leq a_{n+1}$$

***What this really means: The remainder after the nth partial sum S_N is always less than or equal to the first omitted term of the alternating series.

Examples:

1. Find the number of terms needed to approximate $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n!}$ with an error less than 0.001.

Start with $|R_N| \le a_{n+1} \le 0.001$.

$$\alpha_{n+1} = \frac{1}{2^{n+1}(n+1)!} \leq 0.001$$

plug in values of n.

$$\frac{1}{2^{3+1}(3+1)!} = .003 2.00!$$

$$\frac{1}{2^{3+1}(3+1)!} = .003 4.001$$

$$\frac{1}{2^{4+1}(4+1)!} = \frac{1}{3840} = .0002 \pm .001$$

2. Find the number of terms needed to approximate $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$ with an error less than 0.001.

$$\alpha_{n+1} = \frac{1}{(n+n)^4} \leq .001$$

$$\frac{1}{(3+1)^{4}} = .004 \times .001$$

$$\frac{1}{(4+1)^{4}} = .001(p < .00)$$

$$\frac{1}{(5+0)^4} = .0007 \le .001 \sqrt{\frac{n=5}{5 \text{ terms}}}$$

<u>ABSOLUTE CONVERGENCE OF AN ALTERNATING SERIES</u>

Let $\sum_{n=1}^{\infty} (-1)^n a_n$ be an alternating series.

- 1. $\sum_{n=1}^{\infty} (-1)^n a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} a_n$ converges.
- 2. $\sum_{n=1}^{\infty} (-1)^n a_n$ is conditionally convergent if $\sum_{n=1}^{\infty} (-1)^n a_n$ converges

but $\sum_{n=0}^{\infty} a_n$ diverges.

Examples: Does each series converge or diverge? If it converges, is it absolutely or conditionally convergent?

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$$

$$Q_n = \frac{1}{n+1}$$

$$\lim_{n \to \infty} \left(\frac{1}{n+1} \right) = \frac{1}{\infty} = 0$$

$$\lim_{n \to \infty} \left(\frac{1}{n+1} \right) = \frac{1}{n+1}$$

$$\lim_{n \to \infty} \left(\frac{1}{n+1} \right) = \frac{1}{n+1}$$

$$\frac{1}{(n+1)+1} \leq \frac{1}{n+1}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n\sqrt{n}} \qquad (1) \quad 0 \quad n = \frac{1}{\sqrt{5n}} = \frac{1}{\sqrt{3/3}}$$

$$\frac{1}{(n+1)^{3/2}} \leq \frac{1}{n^{3/2}}$$

$$\lim_{n \to \infty} \frac{1}{n^{3/2}} = \frac{1}{\infty} = 0$$

$$\lim_{n \to \infty} \frac{1}{n^{3/2}} = \frac{1}{n^{3/2}}$$

$$\lim_{n \to \infty} \frac{1}{n^{3/2}} = \frac{1}{n^{3/2}}$$