Day 5 Notes: Alternating Series

An alternating series has terms that alternate between positive and negative:

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n} \text { or } \sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

For example, this is a common alternating series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{(-1)^{n}}{n}+\cdots
$$

ALTERNATING SERIES TEST

Let $a_{n}>0$. The alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ and $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converge if both of these conditions are met:

1. $\lim _{n \rightarrow \infty} a_{n}=0$
2. $a_{n+1} \leq a_{n}$ for all n (each term must be \leq the preceding term).

Examples: Determine convergence or divergence.

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{n^{2}+1}$

REMAINDER THEOREM FOR ALTERNATING SERIES

If a convergent alternating series has R_{N} as the remainder obtained by approximating the sum of the series S with S_{N}, then

$$
\left|R_{N}\right| \leq a_{n+1}
$$

***What this really means: The remainder after the nth partial sum S_{N} is always less than or equal to the first omitted term of the alternating series.

Examples:

1. Find the number of terms needed to approximate $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} n!}$ with an error less than 0.001 .

Start with $\left|R_{N}\right| \leq a_{n+1} \leq 0.001$.
2. Find the number of terms needed to approximate $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}$ with an error less than 0.001 .

ABSOLUTE CONVERGENCE OF AN ALTERNATING SERIES

Let $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ be an alternating series.

1. $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty} a_{n}$ converges.
2. $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is conditionally convergent if $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges but $\sum_{n=1}^{\infty} a_{n}$ diverges.

Examples: Does each series converge or diverge? If it converges, is it absolutely or conditionally convergent?

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \sqrt{n}}$

AP Calculus BC
Unit 9 - Day 5 - Assignment

Name: \qquad
\#'s 1-7: Determine the convergence or divergence of the series.

1) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}$	2) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{n^{2}+1}$
3) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$	4) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)}{\ln (n+1)}$
5) $\sum_{n=1}^{\infty} \sin \left(\frac{(2 n-1) \pi}{2}\right)$	6) $\sum_{n=1}^{\infty} \cos (n \pi)$
7) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$	

\#'s 8 - 9: Determine the number of terms required to approximate the sum of the convergent series with an error or less than 0.001 .
8)
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$
9)
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}$
\#'s 10 - 12: Determine whether the series converges conditionally, or absolutely, or diverges.

10)	11)	12)
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)^{2}}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln n}$

