
 

AP Calculus BC 

Unit 9 – Sequences & Series (Part 1) 

 

Day 5 Notes: Alternating Series  

 An alternating series has terms that alternate between positive and negative: 
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 For example, this is a common alternating series: 
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Examples:  Determine convergence or divergence. 
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ALTERNATING SERIES TEST 

Let 0na .  The alternating series  
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if both of these conditions are met: 

 1.  0lim 


n
n

a  

 2.  nn aa 1  for all n (each term must be < the preceding term). 



 

 

 

 

 

 

 ***What this really means:  The remainder after the nth partial sum NS  is always less than or 

equal to the first omitted term of the alternating series. 

Examples: 

1.  Find the number of terms needed to approximate 
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 Start with 001.01  nN aR . 

 

 

 

 

 

 

2.  Find the number of terms needed to approximate 
 








1
4

1

n

n

n
 with an error less than 0.001. 

REMAINDER THEOREM FOR ALTERNATING SERIES 

 If a convergent alternating series has NR  as the remainder obtained by 

approximating the sum of the series S with NS , then 
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Examples:  Does each series converge or diverge?  If it converges, is it absolutely or conditionally 

convergent? 
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ABSOLUTE CONVERGENCE OF AN ALTERNATING SERIES 

Let  





1

1
n

n

n
a  be an alternating series. 

 1.   





1

1
n

n

n
a is absolutely convergent if 



1n

na converges. 

 2.   





1

1
n

n

n
a  is conditionally convergent if  






1

1
n

n

n
a  converges 

      but 


1n

na  diverges. 



 

 

AP Calculus BC    Name: ______________________________ 

Unit 9 – Day 5 – Assignment 
 

#’s 1 – 7:  Determine the convergence or divergence of the series. 
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#’s 8 – 9:  Determine the number of terms required to approximate the sum of the convergent series 

with an error or less than 0.001. 
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#’s 10 – 12:  Determine whether the series converges conditionally, or absolutely, or diverges. 
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