Day 3 Notes: Integral & p-Series Test

The Integral Test

If f is positive, continuous, and decreasing for x > 1 and $a_n = f(n)$,

then $\sum_{n=1}^{\infty} a_n$ and $\int_{1}^{\infty} f(x) dx$ either both converge or both diverge.

Example 1: Does the series $\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \cdots$ converge or diverge?

First write the series in summation notation:

Now apply the integral test:

Example 2: Does $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converge or diverge?

Note: In example 2, the integral converges to $\pi/4$. This does NOT mean that $\sum_{n=1}^{\infty} \frac{1}{n^2+1} = \pi/4$. It just means that the series converges.

A series in the form $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$ is called a **p-series**.

When p = 1, we have the **harmonic series** $\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

Convergence of p-Series

The p-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$$

Converges if p > 1

Diverges if 0

Example 4:

Does $\sum_{n=1}^{\infty} \frac{n^5}{n^7}$ converge or diverge?

Your Turn #1:

Use the Integral Test to determine the convergence or divergence of the series.

$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$

Your Turn #2:

Determine if the series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$$

#'s 1 – 4: Use the Integral Test to determine the convergence or divergence of the series.

1)	2)					
$\sum_{n=0}^{\infty}$		ln2		ln4	ln5	
$\sum_{n=1}^{\infty} e^{-n}$		2 '	3 '	4 '	5 '	

3)
$$\frac{1}{4} + \frac{2}{7} + \frac{3}{12} + \dots + \frac{n}{n^2 + 3} + \dots$$

$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

#'s 5-6: Determine the convergence or divergence of the p-series

$\sum_{n=1}^{\infty} \frac{3}{n^{5/3}}$ $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \cdots$	ii 95 0. Betermine the convergence of diver	gence of the p series
	5)	6)
		272 373 474

#'s 7 - 10: Determine the convergence or divergence of the series.

7)	_	\sim	1	
		<u> </u>	n-1	1

$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt[4]{n}}$$

$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$$

$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2 - 1}}$$

10)