AP Calculus BC

Unit 9 - Sequences \& Series (Part 1)

Day 1 Notes: Sequences

A sequence is a list of terms: $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$

$$
\mathrm{a}_{1}=\text { first term }
$$

$$
a_{n}=\text { nth term }
$$

$$
\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

Limit of a Sequence:

Let f be a function of real variables such that $\lim _{x \rightarrow \infty} f(x)=L$. If $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is a sequence such that $\mathrm{f}(\mathrm{n})=\mathrm{a}_{\mathrm{n}}$ for every positive integer n , then $\lim _{n \rightarrow \infty} a_{n}=L$.

Example 1: Write out the first four terms of the sequence and then find the limit of the sequence with the nth term: $\qquad a_{n}=\frac{\ln n^{2}}{n}$	Example 2: Find the limit of $\left\{a_{n}\right\}=\frac{(n+1)!}{n!}$
Example 3:	
Find the limit of $\left\{a_{n}\right\}=\left\{3+(-1)^{n}\right\}$	Example 4:

Monotonic Sequence:

$\left\{a_{n}\right\}$ is monotonic if

$$
\mathrm{a}_{1} \leq \mathrm{a}_{2} \leq \mathrm{a}_{3} \leq \ldots \leq \mathrm{a}_{\mathrm{n}} \leq \ldots \text { (increasing) OR }
$$

$$
\mathrm{a}_{1} \geq \mathrm{a}_{2} \geq \mathrm{a}_{3} \geq \ldots \geq \mathrm{a}_{\mathrm{n}} \geq \ldots(\text { decreasing })
$$

Bounded Sequence:

1) $\left\{a_{n}\right\}$ is bounded above if $a_{n} \leq M$.
2) $\left\{a_{n}\right\}$ is bounded below if $a_{n} \geq N$.
3) $\left\{a_{n}\right\}$ is bounded if $N \leq a_{n} \leq M$

If a sequence is bounded and monotonic, then it will converge.

Example 5:

Show that a_{n} is bounded and monotonic.

$$
\left\{a_{n}\right\}=\left\{\frac{1}{n}\right\}
$$

Example 6:

Show that a_{n} is monotonic and bounded below.

$$
\left\{a_{n}\right\}=\left\{\frac{n^{2}}{n+1}\right\}
$$

Absolute Value Theorem:

If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Example 7:

Show that $\lim _{n \rightarrow \infty} a_{n}=0$ if $\left\{a_{n}\right\}=\left\{\frac{(-1)^{n} n}{3^{n}}\right\}$

AP Calculus BC
Unit 9 - Day 1 - Assignment
\#'s 1 - 2: Write the first five terms of the sequence.

1) $a_{n}=5-\frac{1}{n}+\frac{1}{n^{2}}$	$a_{n}=\frac{3^{n}}{n!}$

3) Write the next two apparent terms of the sequence. Describe the pattern you used to find these terms.

$$
\frac{7}{2}, 4, \frac{9}{2}, 5, \ldots
$$

\#'s 4-5: Simplify the ratio of factorials.

| 4) $\frac{10!}{8!}$ | $\frac{(2 n-1)!}{(2 n+1)!}$ |
| :--- | :--- | :--- |

\#'s 6-15: Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit.

10)	$a_{n}=\cos \frac{n \pi}{2}$		$a_{n}=(-1)^{n}\left(\frac{n}{n+1}\right)$
	$a_{n}=\frac{1+(-1)^{n}}{n}$	13)	$a_{n}=\frac{3^{n}}{4^{n}}$
	$a_{n}=\frac{n-1}{n}-\frac{n}{n-1}, n \geq 2$	15)	$a_{n}=\frac{n^{p}}{e^{n}}, p>0$

\#'s 16 - 18: Determine whether the sequence with the given nth term is monotonic.
Discuss the boundedness of the sequence.

| 16) $a_{n}=4-\frac{1}{n}$ | $a_{n}=\frac{n}{2^{n+2}}$ |
| :--- | :--- | :--- |
| 18$)$ | $a_{n}=\sin \frac{n \pi}{6}$ |

