AP Calculus BC
Unit 8 — Integration Techniques

Day 10 Notes: Logistics Differential Equations

General Logistic Formula:
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M = carrying capacity
k = growth constant

Example 1:
Let f(x) = ___1+4e-0 —

a) Find where f(x) is continuous.| - 62, ”O) I

b) Fmdgi_{gf(x), @ W e

¢) Find lim () @

d) Find the y-intercept of the graph of f(x). 50 = _59 -
Y = =10

e) Find ail horizontal asymptotes of the glaph of 1(x). \\j D él \{ ()\

f) Find the carrying capacity of f{(x). 50

Logistics Differential Equation:
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Things to remember about logistics differential equations:
1) M = carrying capacity
2) No matter what the initial population is, tlt_ﬁlo Pt)=M
3) The growth rate of P(t) is increasing fastest when P = M /2. :
4) You can solve a logistics differential equation by separating the variables and 1
partial fractions.



Example 2: The growth rate of a population P of bears in a newly established
preserve is modeled by the differential equation dP/dt = 0.008P(100 — P), Wh
measured in years.

a) What is the carrying capacity for bears in this wildlife preserve? lO()

b) What is the bear population when the population is growing the fastest?

¢) What is the rate of change of the populatioﬁ when it is growing the fastest?

d) If, what is lim P(£)? | 100 = M %% =,008 (‘:1
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Example 3: In 1985 and 1987, the Michigan Department of Natural Resource
61 moose from Algonquin Park, Ontario to Marquette County in the Upper Pe
was originally hoped that the population P would reach carrying capacity in ab
years with a growth rate of

dpP o
P 0.0003P(1000 — P)
a) According to the model, what is the carrying capacity? \'\DQO MO

b) Solve the differential equatlon with the initial condmon P(0) =61.
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Example 4 A 2000-gallon tank contains guppies. The rate of growth of the g
the tank i IS — = P(0.225 — 0.0015P), where t is in weeks.

lon, what is lim P(t)? Intefp
t —=co
oo limit in the context of the problem.
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b) Solve the differential equation, given that P(0) =20.
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