AP Calculus BC Unit 8 – Integration Techniques

Day 10 Notes: Logistics Differential Equations

General Logistic Formula:

$$P = \frac{M}{1 + Ae^{-(Mk)t}}$$

M = carrying capacity k = growth constant

Example 1:

Let
$$f(x) = \frac{50}{1+4e^{-0.2x}}$$

- a) Find where f(x) is continuous. $(-\infty, \infty)$
- b) Find $\lim_{x \to \infty} f(x)$. $\boxed{50} = M$
- c) Find $\lim_{x \to -\infty} f(x)$.
- d) Find the y-intercept of the graph of f(x). $\frac{50}{1+4} = \frac{50}{5} = \boxed{10}$
- e) Find all horizontal asymptotes of the graph of f(x). $\sqrt{-5D}$
- f) Find the carrying capacity of f(x). 50

Logistics Differential Equation:

$$\frac{dP}{dt} = kP(M-P)$$

Things to remember about logistics differential equations:

- 1) $M = carrying \ capacity$
- 2) No matter what the initial population is, $\lim_{t\to\infty} P(t) = M$.
- 3) The growth rate of P(t) is increasing fastest when P = M/2.
- 4) You can solve a logistics differential equation by separating the variables and using partial fractions.

Example 2: The growth rate of a population P of bears in a newly established wildlife preserve is modeled by the differential equation dP/dt = 0.008P(100 - P), where Lis measured in years.

What is the carrying capacity for bears in this wildlife preserve?

100 bears

- What is the bear population when the population is growing the fastest?
- What is the rate of change of the population when it is growing the fastest?
- If P(0) = 20, what is $\lim_{t \to \infty} P(t)$? matter

$$\frac{dP}{dt} = .008(50)(100-50)$$

Example 3: In 1985 and 1987, the Michigan Department of Natural Resources arrifted 61 moose from Algonquin Park, Ontario to Marquette County in the Upper Peninsula. It was originally hoped that the population P would reach carrying capacity in about 25 years with a growth rate of

$$\frac{dP}{dt} = 0.0003P(1000 - P)$$

According to the model, what is the carrying capacity?

b) Solve the differential equation with the initial condition P(0) = 61.

$$\frac{1}{\frac{1}{(1000-b)}} = \frac{\frac{(1000-b)}{b}}{\frac{1000-b}{(1000-b)}} = \frac{\frac{(b)}{1000-b}}{\frac{1000-b}{(b)}}$$

$$\int \frac{.001}{P} + \frac{.001}{1000-P} = \int .0003 dt$$

P=0: 1=A(1000-0)+ B(0) 1= ACLOOU)

100. = A

1= A (1000-P)+ B(P)

$$\ln\left(\frac{1000-P}{P}\right) = -.3t - C$$

$$\frac{1000-P}{P} = e^{-.3t-C}$$

Example 4: A 2000-gallon tank contains guppies. The rate of growth of the guppies in the tank is $\frac{dP}{dt} = P(0.225 - 0.0015P)$, where t is in weeks.

a) Without actually solving the differential equation, what is $\lim_{t\to\infty} P(t)$? Interpret the limit in the context of the problem.

$$\frac{dP}{dt} = .0015P(150-P)$$
 limit in the context

The most guppies that will be in the tank is 150

b) Solve the differential equation, given that
$$P(0) = 20$$
.

$$\frac{dP}{dt} = .0015P(150-P)$$

$$\frac{dP}{P(150-P)} = \frac{A}{P} + \frac{B}{190-P}(P)$$

$$\frac{dP}{P=0} = \frac{A}{P} + \frac{B}{190-P}(P)$$

$$\frac{dP}{P=0} = \frac{A}{P} + \frac{B}{190-P}(P)$$

$$\frac{dP}{P=0} = \frac{A}{P} + \frac{B}{190-P}(P)$$

$$\frac{B}{P=150} = \frac{A}{P} + \frac{B}{P}$$

$$\frac{B}{P=150} = \frac{A}{P} + \frac{B}{P}$$

$$\frac{B}{P=150} = \frac{A}{P} + \frac{B}{P}$$

$$\frac{B}$$

$$\frac{150}{0} = 1 + e^{-0.235}t - c$$

$$\frac{150}{P} = 1 + 6.5e^{-.225}t$$