AP Calculus Unit 7 – Advanced Integration & Applications

Day 7 Notes: Volumes of Solids with Known Cross Sections

What do you notice about the integral-defined formulas for finding the volume of solids with certain cross sections?

Region R is bounded by $y = \sin(\pi x)$ and $y = x^3 - 4x$.

Find the volume of the solids formed whose cross sections are the shapes indicated below. The cross sections are perpendicular to the x – axis.

eross sections are perpendicular to the x ans.	
a. Cross sections are equilateral triangles	b. Cross sections are semi-circles
c. Cross sections are isosceles right triangles	d. Cross sections are squares.
e. Cross sections are rectangles whose height is twice the length of the base.	f. Cross sections are rectangles whose height is one-third the length of the base.

CALCULATOR PERMITTED

2010 AP[®] CALCULUS AB (Form B) Question 1

In the figure above, *R* is the shaded region in the first quadrant bounded by the graph of $y = 4\ln(3 - x)$, the horizontal line y = 6, and the vertical line x = 2.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when *R* is revolved about the horizontal line y = 8.
- (c) The region *R* is the base of a solid. For this solid, each cross section perpendicular to the *x*-axis is a square. Find the volume of the solid.

