## **AP Calculus**

Unit 7 - Advanced Integration & Applications

## Day 5 Notes: Finding the Area between Two Curves

AREA BETWEEN TWO CURVES:

Area = 
$$S_a$$
 f(x) -g(x)dx, provided that f(x) >g(x)  
for a < x < b.

**Example 1**: Find the area of the shaded region, R, that is bounded by  $y = \sin(\pi x)$  and  $y = x^3 - 4x$ .

$$\int_0^2 \sin(\pi x) - (x^3 - 4x) dx = \boxed{4}$$



**Example 2:** Pictured to the right is the graph of  $f(x) = \frac{x^3}{4} - \frac{x^2}{3} - \frac{x}{2} + 3\cos x$  and a line, *l*, which

is tangent to f(x) at the point (0, 3).

y<sub>2</sub> = 0

Find the area of Region R.

$$\int_{-1.313}^{0} \frac{x^{3}}{4} - \frac{x^{3}}{3} - \frac{x}{3} + 3\cos x \, dx = \boxed{2.903}$$

Find the equation of line l if it is tangent to the graph of f(x)

$$a(0,3)$$
 point slope =  $-\frac{1}{2}$ 

$$\sqrt{-3} = -\frac{1}{2}(x-0) \rightarrow \sqrt{-3} = -\frac{1}{2}x$$
  $\sqrt{1 = 3 - \frac{1}{2}x}$ 

At what ordered pair, other than (0, 3), does the graph of line l intersect the graph of f(x)?

put 
$$y_2 = 3 - 1/2x$$
 Find intersection.

(3.390,1.305)

Find the area of Region S.

$$(3-\frac{1}{2}x)-(\frac{x^{3}}{4}-\frac{x^{2}}{3}-\frac{x^{2}}{2}+3\cos x)dx = [6.982]$$

**Example 3:** Pictured to the right are regions R and S, which are formed by the graphs of  $f(x) = \frac{1}{4} + \sin(\pi x)$  and  $g(x) = 4^{-x}$ 

Identify the points of intersection of f(x) and g(x).

Find the area of Region R.

$$\int_{0.178}^{0.178} 4^{-x} - (4 + \sin(\pi x)) dx = [0.065]$$



Find the area of Region S.

$$\int_{0.178}^{1} \frac{1}{4} + \sin(tx) - 4^{-x} dx = \boxed{0.410}$$

Find the area of the unshaded region bounded by the graphs of f, g, and the x – axis.

$$\int_{0}^{1.080} \frac{1}{4} + \sin(\pi x) - \int_{0.0178}^{1} \frac{1}{4} + \sin(\pi x) - 4^{-x} dx$$

$$= 0.897 - 0.410$$