## AP Calculus AB Unit 7 – Day 4 – Assignment

Name: Answer Key\*

## 2010 AP® CALCULUS AB (Form B) Question 5

Consider the differential equation  $\frac{dy}{dx} = \frac{x+1}{y}$ .

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and for -1 < x < 1, sketch the solution curve that passes through the point (0, -1).

(Note: Use the axes provided in the exam booklet.)

- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the *xy*-plane for which  $y \ne 0$ . Describe all points in the *xy*-plane,  $y \ne 0$ , for which  $\frac{dy}{dx} = -1$ .
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = -2.



(a) 
$$\frac{dy}{dx} = \frac{x+1}{y}$$
Slope eqn.

$$-1 = \frac{x+1}{y}$$

$$-y = x+1$$

$$y = -x-1$$

$$\frac{dy}{dx} = -1 \text{ for all } (x,y)$$
with  $y = -x-1 + y + 0$ 

(a) 
$$\frac{dy}{dx} = \frac{x+1}{y}$$
  
 $\int y \, dy = \int (x+1) \, dx$   
 $\frac{1}{2}y^2 = \frac{1}{2}x^2 + x + C$   
 $f(0) = -2$   
 $\frac{1}{2}(-2)^2 = \frac{1}{2}(0)^2 + p + C$   
 $C = 2$   
 $\frac{1}{2}y^2 = \frac{1}{2}x^2 + x + 2$   
 $y^2 = x^2 + 2x + 4$   $f(0) = 62$   
 $y = \pm \sqrt{x^2 + 2x + 4}$ 

## 2004 AP® CALCULUS AB

## Question 6

Consider the differential equation  $\frac{dy}{dx} = x^2(y-1)$ .

- (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.(Note: Use the axes provided in the pink test booklet.)
- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the xy-plane. Describe all points in the xy-plane for which the slopes are positive.
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 3.





 $\bigcirc \frac{dy}{dy} = x^2(y-1)$  $\frac{dA}{dA} = \frac{X_3(AV) QX}{X_1}$ S 4-17-1 dy = Sx2 dx (4-1) = 3x3+C In/4-11=3x3+0 F(0)=3 1n/3-1/= \$(8) +C (= ln2  $|y-1| = \frac{1}{2}x^3 + \ln 2$   $|y-1| = e^{\frac{1}{2}x^3}$ 

F(x)=1+2e 3x3

f(0)=3

y-1= 20 3x3

 $0 \quad \lambda = 1 = -3e^{\frac{1}{3}\chi^3}$