Day 3 Notes: Solving Differential Equations

Given below are differential equations with given initial condition values. Find the particular solution, y = f(x), for each differential equation that satisfies the given initial condition.

1.
$$\frac{dy}{dx} = 6x^2 + 6x + 2$$
 and $f(-1) = 2$

2.
$$\frac{dy}{dx} = \frac{1 + 12x^{\frac{3}{2}}}{2\sqrt{x}}$$
 and $f(0) = 2$

3.
$$\frac{dy}{dx} = \frac{x^2 + 2x}{2y}$$
 and $f(0) = 2$

4.
$$\frac{dy}{dx} = \frac{x+2}{y}$$
 and $f(1) = -3$

5. $\frac{dy}{dx} = x^4(y-2)$ and $f(0) = 0$	6. $\frac{dy}{dx} = \frac{y-1}{x^2}$ and $f(2) = 0$

2000 AP Calculus AB Question 6

Consider the differential equation $\frac{dy}{dx} = \frac{3x^2}{e^{2y}}$.

- (a) Find a solution y = f(x) to the differential equation satisfying $f(0) = \frac{1}{2}$.
- (b) Find the domain and range of the function f found in part (a).

AP Calculus AB		
Unit 7	– Day 3 –	Assignment

Name:	

AP® CALCULUS AB

2001 Question 6

The function f is differentiable for all real numbers. The point $\left(3,\frac{1}{4}\right)$ is on the graph of y=f(x), and the slope at each point (x,y) on the graph is given by $\frac{dy}{dx}=y^2\left(6-2x\right)$.

- (a) Find $\frac{d^2y}{dx^2}$ and evaluate it at the point $\left(3,\frac{1}{4}\right)$.
- (b) Find y=f(x) by solving the differential equation $\frac{dy}{dx}=y^2\,(6-2x)$ with the initial condition $f(3)=\frac{1}{4}$.

AP® CALCULUS AB

2002 (Form B) Question 5

Consider the differential equation $\frac{dy}{dx} = \frac{3-x}{y}$.

- (a) Let y = f(x) be the particular solution to the given differential equation for 1 < x < 5 such that the line y = −2 is tangent to the graph of f. Find the x-coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at this point. Justify your answer.
- (b) Let y = g(x) be the particular solution to the given differential equation for -2 < x < 8, with the initial condition g(6) = -4. Find y = g(x).

AP Calculus	AB
Unit 7 – Day	4 – Warm-up

Name:

2011 AP® CALCULUS AB Question 4

The continuous function f is defined on the interval $-4 \le x \le 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above.

Let
$$g(x) = 2x + \int_0^x f(t) dt$$
.

- (a) Find g(-3). Find g'(x) and evaluate g'(-3).
- (b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \le x \le 3$. Justify your answer.
- (c) Find all values of x on the interval -4 < x < 3 for which the graph of g has a point of inflection. Give a reason for your answer.

Graph of f

(d) Find the average rate of change of f on the interval $-4 \le x \le 3$. There is no point c, -4 < c < 3, for which f'(c) is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.