AP Calculus

Unit 7 - Advanced Integration \& Applications

Day 3 Notes: Solving Differential Equations

Given below are differential equations with given initial condition values. Find the particular solution, $y=f(x)$, for each differential equation that satisfies the given initial condition.

1. $\frac{d y}{d x}=6 x^{2}+6 x+2$ and $f(-1)=2$	2. $\frac{d y}{d x}=\frac{1+12 x^{3 / 2}}{2 \sqrt{x}}$ and $f(0)=2$
3. $\frac{d y}{d x}=\frac{x^{2}+2 x}{2 y}$ and $f(0)=2$	4. $\frac{d y}{d x}=\frac{x+2}{y}$ and $f(1)=-3$

$$
\text { 5. } \frac{d y}{d x}=x^{4}(y-2) \text { and } f(0)=0 \quad \text { 6. } \frac{d y}{d x}=\frac{y-1}{x^{2}} \text { and } f(2)=0
$$

2000 AP Calculus AB
 Question 6

Consider the differential equation $\frac{d y}{d x}=\frac{3 x^{2}}{e^{2 y}}$.
(a) Find a solution $y=f(x)$ to the differential equation satisfying $f(0)=\frac{1}{2}$.
(b) Find the domain and range of the function f found in part (a).

AP Calculus AB
Unit 7 - Day 3 - Assignment

Name: \qquad

$A{ }^{\circledR}{ }^{\circledR}$ CALCULUS AB

2001 Question 6

The function f is differentiable for all real numbers. The point $\left(3, \frac{1}{4}\right)$ is on the graph of $y=f(x)$, and the slope at each point (x, y) on the graph is given by $\frac{d y}{d x}=y^{2}(6-2 x)$.
(a) Find $\frac{d^{2} y}{d x^{2}}$ and evaluate it at the point $\left(3, \frac{1}{4}\right)$.
(b) Find $y=f(x)$ by solving the differential equation $\frac{d y}{d x}=y^{2}(6-2 x)$ with the initial condition $f(3)=\frac{1}{4}$.

$A P^{\circledR}$ CALCULUS AB

2002 (Form B) Question 5

Consider the differential equation $\frac{d y}{d x}=\frac{3-x}{y}$.
(a) Let $y=f(x)$ be the particular solution to the given differential equation for $1<x<5$ such that the line $y=-2$ is tangent to the graph of f. Find the x-coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at this point. Justify your answer.
(b) Let $y=g(x)$ be the particular solution to the given differential equation for $-2<x<8$, with the initial condition $g(6)=-4$. Find $y=g(x)$.

AP Calculus AB

Unit 7 - Day 4 - Warm-up

Name:

\qquad

2011 AP ${ }^{\oplus}$ CALCULUS AB Question 4

The continuous function f is defined on the interval $-4 \leq x \leq 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above.
Let $g(x)=2 x+\int_{0}^{x} f(t) d t$.
(a) Find $g(-3)$. Find $g^{\prime}(x)$ and evaluate $g^{\prime}(-3)$.
(b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \leq x \leq 3$. Justify your answer.
(c) Find all values of x on the interval $-4<x<3$ for which the graph of g has a point of inflection. Give a reason for your answer.
(d) Find the average rate of change of f on the interval
 Graph of f
$-4 \leq x \leq 3$. There is no point $c,-4<c<3$, for which $f^{\prime}(c)$ is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.

