AP Calculus AB

Unit 7 — Day 2 — Warm-up

Name: ANSUOEY \Le\,kj*

Craph of f
The continuous function fis defined on the interval -4 <x <3. The graph consists of two quarter

circles and one line segment, as show in the figure above. Let g(x) = %xz + j; f()de .

Find the value of g(3').
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Find the value of g{(—4).
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Find the value of g '(3).
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Find the value ofg "(2).
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AP Calculus

Unit 7 — Advanced Integration & Applications

Day 2 Notes: Integration of Composite Functions

Anti-differentiation by Pattern Recognition
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Find each of the following indefinite integrals by pattern recognition. ,
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Anti-differentiation by U-Substitution

In each of the eight examples above, the g'(x) existed in the integrand of j S'(g(x) g'(x)dxor

g'(x) was attainable by multiplying by a constant. The g'(x)does not always exist and there are
times when it is not attainable by multiplication of a constant. Consider the example below.

[

Identify the “inner function,” g(x): ASa _
What is g '(x) ? 2 Is g '(x) part of the integrand? _ ‘YO
Is g '(x) attainable by multiplying the integrand by a constant? 0O

In this case, we must find the anti-derivative by a method known as U-Substitution. Here is how
it works.

1. Let u = the inner function, g(x). 4. Rewrite the entire integrand as a polynomial or

polynomial type of function in terms of u. Then,
W= -1 anti-differentiate.
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3. Find an expression for x in terms of u. L \A%_g 4 % ] T C
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2x+1 dx
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1. Let u =the inner function, g(x).

2. Find du and solve the equation for dx.

du=1ax

3. Find an expression for x in terms of u.
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4. Rewrite the entire integrand as a polynomial or
polynomial type of function in terms of 2. Then,
anti-differentiate.
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