

Graph of f

The continuous function f is defined on the interval $-4 \le x \le 3$. The graph consists of two quarter circles and one line segment, as show in the figure above. Let $g(x) = \frac{1}{2}x^2 + \int_0^x f(t)dt$.

Find the value of $g(3)$.	Find the value of $g(-4)$.	
$g(3) = \pm (3)^{2} + \int_{0}^{3} f(t) dt$	タ(-4)= 立(-4)=ナ 5-4 キ(+) は+	
= H.5 + \frac{1}{2}(1.5)(3) - \frac{1}{2}(1.5)(3)	= 8 + -S-4 f(+) d+	XXX
主なの(3)	area	0/1
9(3) = 4.5	$= 8 + - \left[\frac{1}{4} \pi (3)^2 - \frac{1}{4} \pi (0)^2 \right] =$	8 / M
Find the value of $g'(3)$.	Find the value of $g''(2)$.	
g'(x) = x + f(x)(i)	9'(x) = x + f(x)	
g'(3) = (3) + f(3)	9''(x) = 1 + f'(x)	
= 3 + -3	9"(2) = 1 + f'(2) slope of	tangent
= 0	= 1+2	
	= [1]	1

Day 2 Notes: Integration of Composite Functions

Anti-differentiation by Pattern Recognition $\frac{d}{dx}[f(g(x))] = \frac{f'(g(x)) \cdot g'(x)}{f'(x)} \qquad (2x+1)^{3}$ $f'(x) = 3(2x+1)^{2}(2)$ $\int f'(g(x)) \cdot g'(x) dx = \frac{f(g(x)) + C}{f'(x)}$

Find each of the following indefinite integrals by pattern recognition. $\frac{(x^2+5)^{4/3}}{4/3} + C$ \$\(\chi^2+5\)^4|3+C $\int \frac{2x+2}{x^2+2x} dx = \int (2x+2)(x^2+2x)^{-1}$ 3(sin(3x+2)) +C -cos(2x+3)+c 3sin(3x+2) +C $\int \frac{3x}{\sqrt{2x^2+3}} dx = 3 \text{ (2x}^2+3)^{-1/3} dx$ $\frac{1}{3}$.5 $3e^{3x}$ dx\$[ex] +C 3 (2x2+3)1/2 +C 3 (2x2+3)12+c

要。ま

Anti-differentiation by U-Substitution

In each of the eight examples above, the g'(x) existed in the integrand of $\int f'(g(x)) \cdot g'(x) dx$ or g'(x) was attainable by multiplying by a constant. The g'(x) does not always exist and there are times when it is not attainable by multiplication of a constant. Consider the example below.

Identify the "inner function," $g(x)$:	2X-1	
What is $g'(x)$?2	Is $g'(x)$ part of the integrand?	70
Is $g'(x)$ attainable by multiplying the	e integrand by a constant?	

In this case, we must find the anti-derivative by a method known as U-Substitution. Here is how it works.

1. Let u = the inner function, g(x).

9 U= 2X-1)
$\int \mathcal{M} = \mathcal{M} \times \mathcal{M}$	ſ
	_/

2. Find du and solve the equation for dx.

$$du = 2dx$$

$$\frac{dy}{a} = dx$$

3. Find an expression for x in terms of u.

$$\begin{array}{c} U = 2x - 1 \\ U + 1 \\ 2 = x \end{array}$$

4. Rewrite the entire integrand as a polynomial or polynomial type of function in terms of *u*. Then, anti-differentiate.

$$\int \frac{2x+1}{\sqrt{x+4}} dx = \int (2x+1)(x+4)^{-1/2} dx$$

1. Let u = the inner function, g(x).

2. Find du and solve the equation for dx.

du=1dx

GX=du

3. Find an expression for x in terms of u.

U=X+4 -4=X 4. Rewrite the entire integrand as a polynomial or polynomial type of function in terms of *u*. Then, anti-differentiate.

 $\int (2x+i)(x+4)^{-1/2}dx$

 $\int (2(u-4)+1)(u)^{-1/2}du$

SQu-8+1)(u-1/2)du

S (24-7)(4-1/a) du

Sau'la-7u-'la du

243/2 - 74/2 +C

2 ४<mark>अ</mark> # 3/a - 14u'la +C

7.2

| 当(X+4)3/2-14(X+4)1/2+C