AP Calculus

Unit 7 - Advanced Integration \& Applications

Day 2 Notes: Integration of Composite Functions

Anti-differentiation by Pattern Recognition

$$
\begin{aligned}
& \frac{d}{d x}[f(g(x))]= \\
& \int f^{\prime}(g(x)) \cdot g^{\prime}(x) d x=
\end{aligned}
$$

Find each of the following indefinite integrals by pattern recognition.

$\int 2 x \sqrt[3]{x^{2}+5} d x$	$\int 3 \cos 3 x d x$
$\int 3 x \sqrt{x^{2}+2} d x$	$\int \frac{2 x+2}{x^{2}+2 x} d x$
$\int \cos (3 x+2) d x$	$\int 2 \sin (2 x+3) d x$
$\int 5 e^{3 x} d x$	$\int \frac{3 x}{\sqrt{2 x^{2}+3}} d x$

Anti-differentiation by U-Substitution

In each of the eight examples above, the $g^{\prime}(x)$ existed in the integrand of $\int f^{\prime}(g(x)) \cdot g^{\prime}(x) d x$ or $g^{\prime}(x)$ was attainable by multiplying by a constant. The $g^{\prime}(x)$ does not always exist and there are times when it is not attainable by multiplication of a constant. Consider the example below.

$$
\int x(2 x-1)^{3} d x
$$

Identify the "inner function," $g(x)$:
What is $g^{\prime}(x)$? Is $g^{\prime}(x)$ part of the integrand? \qquad
Is $g^{\prime}(x)$ attainable by multiplying the integrand by a constant? \qquad

In this case, we must find the anti-derivative by a method known as U-Substitution. Here is how it works.

1. Let $u=$ the inner function, $g(x)$.	4. Rewrite the entire integrand as a polynomial or polynomial type of function in terms of u. Then, anti-differentiate.

$$
\int \frac{2 x+1}{\sqrt{x+4}} d x
$$

1. Let $u=$ the inner function, $g(x)$.	4. Rewrite the entire integrand as a polynomial or polynomial type of function in terms of u. anti-differentiate. Then,
2. Find $d u$ and solve the equation for $d x$.	
3. Find an expression for x in terms of u.	

AP Calculus AB

Name: \qquad
Unit 7 - Day 2 - Assignment
In problems $1-6$, find the indefinite integral.

1. $\int x^{3}\left(x^{4}+3\right)^{3} d x$	2. $\int(x) \sqrt[3]{1-2 x^{2}} d x$
3. $\int x^{3} \sin \left(x^{4}\right) d x$	4. $\int \frac{x^{3}}{\left(1+x^{4}\right)^{2}} d x$

7. $\int \frac{2 x^{2}}{\sqrt{x^{3}-2}} d x=$
A. $\frac{4}{3}\left(x^{3}-2\right)^{1 / 2}+C$
B. $\frac{1}{3}\left(x^{3}-2\right)^{1 / 2}+C$
C. $\frac{2}{3}\left(x^{3}-2\right)^{1 / 2}+C$
D. $2\left(x^{3}-2\right)^{1 / 2}+C$
E. $3\left(x^{3}-2\right)^{1 / 2}+C$
8. If $u=2 x-3$, then $\int x \sqrt[3]{2 x-3} d x=$
A. $\frac{1}{4} \int u^{4 / 3}+3 u^{1 / 3} d u$
B. $\frac{1}{2} \int u^{2 / 3}+3 u^{4 / 3} d u$
C. $\frac{1}{2} \int \sqrt[3]{u} d u$
D. $\frac{1}{4} \int \sqrt[3]{u} d u$
E. $\frac{1}{2} \int(2 u+3) \sqrt[3]{u} d u$
9. If $\frac{d y}{d x}=\frac{x^{2}}{y}$ and $f(0)=-4$, find the particular solution to the differential equation.
A. $f(x)=\frac{1}{3} x^{3}+4$
B. $f(x)=-\sqrt{\frac{2}{3} x^{3}+16}$
C. $f(x)=\sqrt{\frac{2}{3} x^{3}+16}$
D. $f(x)=\frac{1}{3} x^{3}$
E. $f(x)=-\sqrt{\frac{2}{3} x^{3}+8}$
10. Using the substitution $u=\sqrt{x}, \int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$ is equal to which of the following?
A. $2 \int_{1}^{16} e^{u} d u$
B. $2 \int_{1}^{4} e^{u} d u$
C. $2 \int_{1}^{2} e^{u} d u$
D. $\frac{1}{2} \int_{1}^{2} e^{u} d u$
E. $\int_{1}^{4} e^{u} d u$
11. $\int_{0}^{1} e^{-4 x} d x=$
A. $-\frac{e^{-4}}{4}$
B. $-4 e^{-4}$
C. $e^{-4}-1$
D. $\frac{1}{4}-\frac{e^{-4}}{4}$
E. $4-4 e^{-4}$
12. $\int \frac{x}{x^{2}-4} d x=$
A. $\frac{-1}{4\left(x^{2}-4\right)^{2}}+C$
B. $\frac{1}{2\left(x^{2}-4\right)}+C$
C. $\frac{1}{2} \ln \left|x^{2}-4\right|+C$
D. $2 \ln \left|x^{2}-4\right|+C$
E. $\frac{2}{x^{2}-4}+C$
