AP Calculus

Unit 7 - Advanced Integration \& Applications

Day 1 Notes: Second Fundamental Theorem of Calculus

Given the functions, $f(t)$, below, use $F(x)=\int_{1}^{x} f(t) d t$ to find $F(x)$ and $F^{\prime}(x)$ in terms of x.

1. $f(t)=4 t-t^{2}$	2. $f(t)=\cos t$

Given the functions, $f(t)$, below, use $F(x)=\int_{1}^{x^{2}} f(t) d t$ to find $F(x)$ and $F^{\prime}(x)$ in terms of x.

3. $f(t)=t^{3}$	4. $f(t)=6 \sqrt{t}$

Second Fundamental

 Theorem of CalculusComplete the table below for each function.

Function	Find $F^{\prime}(x)$ by applying the Second Fundamental Theorem of Calculus
$F(x)=\int_{1}^{x}\left(4 t-t^{2}\right) d t$	$F(x)=\int_{1}^{x}\left(4 t-t^{2}\right) d t$
$F(x)=\int_{1}^{x}(\cos t) d t$	$F(x)=\int_{1}^{x}(\cos t) d t$
$F(x)=\int_{1}^{x^{2}} t^{3} d t$	$F(x)=\int_{1}^{x^{2}} t^{3} d t$
$F(x)=\int_{1}^{x^{2}} 6 \sqrt{t} d t$	

Find the derivative of each of the following functions.

$F(x)=\int_{-2}^{2 x} \sqrt{2-t^{2}} d t$	$G(x)=\int_{x^{2}}^{-3} e^{\cos t} d t$	$H(x)=\int_{0}^{\cos x} t^{2} d t$

Pictured to the right is the graph of $g(t)$ and the function $f(x)$ is defined to be $f(x)=\int_{-4}^{2 x} g(t) d t$.

1. Find the value of $f(0)$.

2. Find the value of $f(2)$.
3. Find the value of $f^{\prime}(1)$.
4. Find the value of $f^{\prime}(-2)$.
5. Find the value of $f^{\prime \prime}(2)$.

Given to the right is the graph of $f(t)$ which consists of three line segments and one semicircle.
Additionally, let the function $g(x)$ be defined to be $g(x)=\int_{-1}^{x} f(t) d t$.

1. Find $g(-6)$.
2. Find $g(6)$.

3. Find $g^{\prime}(6)$.
4. Find $g^{\prime}(2)$.
5. Find $g^{\prime \prime}(2)$. Give a reason for your your answer.
6. Find $g^{\prime \prime}(-4)$. Give a reason for answer.
\qquad
Unit 7 - Day 2 - Warm-up

The continuous function f is defined on the interval $-4 \leq x \leq 3$. The graph consists of two quarter circles and one line segment, as show in the figure above. Let $g(x)=\frac{1}{2} x^{2}+\int_{0}^{x} f(t) d t$.

Find the value of $g(3)$.	Find the value of $g(-4)$.
Find the value of $g^{\prime}(3)$.	

AP Calculus AB
 Unit 7 - Day 1 - Assignment

Name: \qquad

Find the derivative of each of the following functions defined by integrals.

1. $g(x)=\int_{2}^{3 x}(2 t+3) d t$	2. $h(x)=\int_{-2}^{x^{4}} 3 \sqrt{t} d t$
3. $f(x)=\int_{2 x}^{-1}\left(t^{2}+2 t\right) d t$	4. $H(x)=\int_{-5}^{\cos x} 2 t^{2} d t$
5. $P(x)=\int_{2}^{x^{2}+2 x}(3 t-2) d t$	

Pictured to the right is the graph of $f(t)$ and $F(x)=\int_{-6}^{2 x} f(t) d t$. Use the graph and $F(x)$ to answer the questions $7-11$.

7. Find the value of $F(0)$.	8. Find the value of $F\left(-\frac{1}{2}\right)$.
9. Find the value of $F^{\prime}(-2)$.	10. Find the value of $F^{\prime}(2.5)$.

11. Find the value of $F^{\prime \prime}(0)$

Pictured to the right is the graph of f and $G(x)=\int_{-2}^{x} f(t) d t$. Use the graph to answer $12-15$.

12. Find the value of $G(3)$.	13. Find the value of $G(-4)$.
14. Find the value of $G^{\prime}(-2)$.	15. Find the value of $G^{\prime \prime}(-5)$.

If $g(x)=\int_{0}^{x} t^{3} e^{t} d t$, find each of the following values in questions $16-17$.
16. Find the value of $g^{\prime}(1)$.
17. Find the value of $g^{\prime \prime}(1)$.

If $h(x)=\int_{x^{2}}^{2} \sqrt{1+t^{4}} d t$, find each of the following values in questions $18-19$.

18. Find $h^{\prime}(x)$.	19. Find $h^{\prime \prime}(1)$.

2004 AP ${ }^{\text {® }}$ CALCULUS AB
 Question 5

The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x)=\int_{-3}^{x} f(t) d t$.
(a) Find $g(0)$ and $g^{\prime}(0)$.
(b) Find all values of x in the open interval $(-5,4)$ at which g attains a relative maximum. Justify your answer.
(c) Find the absolute minimum value of g on the closed interval $[-5,4]$. Justify your answer.

(d) Find all values of x in the open interval $(-5,4)$ at which the graph of g has a point of inflection.

