AP Calculus AB Unit 6 – Review – Group Challenge

CALCULATOR ACTIVE:

1. If
$$\int_a^b f(x)dx = a + 2b$$
, then what is the value of $\int_a^b [f(x) + 5]dx$?

A.
$$a + 2b + 5$$
B. $5b - 5a$
C. $7b - 4a$
D. $7b - 5a$

$$\frac{\int_{a}^{b} f(x)_{dx} + \int_{a}^{b} 5dx}{a+ab + \int_{a}^{b} 5dx}$$

$$a+ab + \left[5(b) - 5(a)\right] = -4a + 7b$$

A STATE OF THE PARTY OF THE PAR						
x	0	(0.5)	(1.0)	(1.5)	2.0	
f(x)	3	3	5	8	13	

2. A table of values of a continuous function is shown above. If four equal subdivisions of the interval [0, 2] are used, what is the trapezoidal approximation of $\int_{0}^{2} f(x)dx$?

A. 24
B. 12
C. 10
$$\pm (.5)(3+3) + \pm (.5)(3+5) + \pm (.5)(5+8) + \pm (.5)(8+13)$$
D. 16

1.5 + 2 + 3.25 + 5.25 = 12

3. A spherical tank contains 81.637 gallons of water at time t = 0. For the next six minutes, water flows out of the tank at the rate of $9\sin(\sqrt{t+1})$ gallons per minute. How many gallons of water are in the tank at the end of the six minutes?

5. After being poured into a cup, coffee cools so that its temperature, T(t), is represented by the function $T(t) = 70 + 110e^{-t/2}$, where t is measured in minutes and T(t) is measured in degrees Fahrenheit. What is the average temperature of the coffee during the first four minutes after being poured?

A.
$$\frac{17.557 \, ^{\circ} \text{F}}{\text{B. } 1356.996 \, ^{\circ} \text{F}}$$
C. $\frac{470.226 \, ^{\circ} \text{F}}{\text{D. } 5427.984 \, ^{\circ} \text{F}}$

$$\frac{1}{4-0} \int_{0}^{4} \frac{10 + 110 \, e^{-t/2}}{10 + 110 \, e^{-t/2}} \, \text{math } 9$$

$$\frac{1}{4} \left(\frac{110.226 \, ^{\circ} \text{F}}{10.226 \, ^{\circ} \text{F}} \right) = \frac{111.557}{10 + 110 \, e^{-t/2}}$$

6. A half-full 50 gallon water tank begins leaking at the rate of
$$L(t) = 5e^{-\frac{(t-3)^2}{2}}$$
 gallons per minute, where t is measured in minutes. How much water remains in the tank after 5 minutes?

A.
$$\frac{37.769 \text{ gallons}}{\text{B. } 12.769 \text{ gallons}}$$
C. $\frac{1.353 \text{ gallons}}{\text{D. } 12.231 \text{ gallons}}$

$$\frac{25 - \sqrt{5}}{0} = \frac{(1 - 3)^2}{2} dt \text{ max } 9}{25 - \sqrt{2} \cdot 2} = \frac{12.769}{2}$$

8. Using a right Riemann sum over the given intervals, estimate $\int_{5}^{35} F(t)dt$.

The state of the s						
t	5	(13)	(22)	(27)	35)	
F(t)	44	12	13	17	22	

9. At 10 a.m. the temperature at a ski resort begins to increase causing the snow to begin to melt at a rate defined by the equation $M(t) = 10 + 8\cos(\frac{t}{3})$. If there are 178 cubic yards of snow at that point, how much snow remains at 5 p.m. if no additional snow has been added and the temperature has continually increased throughout the day?

- B. 265.354 cubic yards
- C. 87.025 cubic yards
- D. 87.354 cubic yards

Obove Karis (x)>0)

10. A function, f(x) is such that f(x) > 0 f'(x) < 0 and f''(x) < 0 on the interval (2, 6). Which of the following statements can be made about the Riemann sum approximation on the interval?

(A.) The left hand approximation will be an over approximation.

- B. The trapezoidal approximation will be an over approximation.
- The right hand approximation will be an over approximation.
- D. The left hand approximation will be an under approximation.

NO CALCULATOR SECTION:

Pictured to the right is the graph of the function, f(x). Use the graph to answer questions 11 and 12.

11. Find
$$\int_0^{\infty} f'(x)dx = f(1) - f(0)$$

- A. 5,5
- B. 4
- C. 9
- Mocholo Jangold (

area 12. Find $\int_0^5 f(x)dx$.

- B. 11
- $\frac{1}{2}(3)(a) + \frac{1}{2}(3)(a+1) + (1)(1)$ 3 + 1.5 + 1 = 5.5

C. 13

D. 12.5

$$\frac{2\chi^{2}-2\chi}{2} = \frac{\chi^{2}-2\chi}{2} = 0$$
13. If $\int_{k}^{2}(2x-2)dx = -3$, which of the following values is a possible value of k ? $\chi^{2}-2\chi-3=0$

A. -2

B. 0

C. 1

($\chi^{2}-2\chi$
($\chi^$

14.
$$\int \frac{x^{4} + 2x^{2}}{x^{3}} dx = \int X + 2X^{-1}$$
A.
$$x + \frac{2}{x} + c$$
B.
$$\frac{\frac{1}{5}x^{5} + x^{2}}{\frac{1}{2}x^{4}} + c$$
C.
$$\frac{1}{2}x^{2} - \ln x + c$$
D.
$$\frac{1}{2}x^{2} + 2\ln x + c$$

$$\frac{1}{2}X^{2} + 2\ln x + C$$

Pictured to the right is the graph of f'(x), the derivative of a function f(x). Use the graph for $t_1(x)$ questions 15 and 16.

15. If f(0) = -3, what is the value of f(3)?

A.
$$10.5 + \pi$$

B. $10.5 + 2\pi$

C. $4.5 + \pi$

D. $4.5 + 2\pi$
 $4(\pi)(2)^2 + \frac{1}{2}(1)(3) + (2)(3)$
 $\pi + 1.5 + 6$
 $\pi + 7.5 = f(3)$

17+4.5=f(3) 16. Which of the following statements is/are true?

 $\sqrt{1}$. f(x) has a point of inflection at x = 3.

$$\int_{-4}^{0} f'(x) dx = 10.5$$

A. I and II only

A. -2

- B. II only
- C. II and III only
- D. I and III only

17. Which of the following sums give(s) an underestimate of the value of $\int_0^1 f(x)dx$ for the function to the right?

II. Right Sum

A. I only

J. II only

C. I and III only

D. II and III only

Х	0	0	4	6)
f(x)	4	k	8	12

18. The function f is continuous on the closed interval [0, 6] and has the values given in the table above. The trapezoidal approximation for $\int_0^6 f(x)dx$, found with 3 subintervals of equal length is 52. What is the value of k?

$$\frac{1}{2}(2)[(4+k)+(k+8)+(8+12)] = 52$$

 $2k+3a=5a$
 $2k=20$
 $k=10$

x	-3	-2	-1	0	1
f(x)	7	3	1	3	. 7
f'(x)	- 5	-3	0	3	5
f"(x)	2	-1	, –3	-2	0

19. Using the table of values above, find the value of $\int_{0}^{1} \left[2f'(x) + 3f''(x) \right] dx$.

$$2 \int_{3}^{3} f'(x) + 3 \int_{3}^{3} f''(x) dx$$

$$2 \left[f(1) - f(-3) \right] + 3 \left[f'(1) - f'(-3) \right]$$

$$2 \left[f(3) - f(-3) \right] + 3 \left[f'(3) - f'(-3) \right]$$

$$2 \left[f(3) - f'(-3) \right] + 3 \left[f'(3) - f'(-3) \right] = 3(10) = 30$$

t (hours)	4	0	(12)	15
R(t) (liters/hour)	6.5	6.2	5.9	5.6

20. A tank contains 50 liters of oil at time t = 4 hours. Oil is being pumped into the tank at a rate of R(t), where R(t) is measured in liters per hour, and t is measured in hours. Selected values of R(t) are given in the table above. Using a right Riemann sum with three subintervals and a data from the table, what is the approximation of the number of liters of oil that are in the tank at time t = 15 hours?

A. 64.9

B. 68.2

$$\begin{array}{c}
5.0 + \int_{0.0}^{15} R(4) \\
\hline
0. 116.6
\end{array}$$

$$\begin{array}{c}
50 + \left[3(6.2) + 5(5.9) + 3(5.6) \right] \\
50 + \left[18.6 + 29.5 + 16.8 \right] \\
\hline
114.9
\end{array}$$