AP Calculus
 Unit 6 - Basic Integration \& Applications

Day 7 Notes: Average Value of a Function

How have we found Average Velocity?

How have we found Average Acceleration?

If $p(t), v(t)$, and $a(t)$ represent position, velocity and acceleration defined for any time t, write an equivalent expression for each of the following integrals based on the fundamental theorem of calculus.

$\frac{1}{b-a} \int_{a}^{b} a(t) d t=$		To what is this equivalent?
$\frac{1}{b-a} \int_{a}^{b} v(t) d t=$		To what is this equivalent?

The average value of a function, $f(x)$, on an interval $[a, b]$ is defined to be:

Find the average value of the function $f(x)=x^{3} \sqrt{\sin ^{2} x}$ on the interval $1 \leq x \leq 3$. [Calculator]

Find the average value of the function $f(x)=2-4 x$ on the interval $2 \leq x \leq 6$. [Noncalculator]

A ski resort uses a snow machine to control the snow level on a ski slope. Over a 24 -hour period the volume of snow added to the slope per hour is modeled by the equation $S(t)=24-t \sin ^{2}\left(\frac{t}{14}\right)$. The rate at which the snow melts is modeled by the equation $M(t)=10+8 \cos \left(\frac{t}{3}\right)$. Both $S(t)$ and $M(t)$ have units of cubic yards per hour and t is measured in hours for $0 \leq t \leq 24$. At time $t=0$, the slope holds 50 cubic yards of snow.
a. Compute the total volume of snow added to the mountain over the first 6-hour period.
b. Find the value of $\int_{0}^{6} M(t) d t$ and $\frac{1}{6} \int_{0}^{6} M(t) d t$. Using correct units of measure, explain what each represents in the context of this problem.
c. Is the volume of snow increasing or decreasing at time $t=4$? Justify your answer.
d. How much snow is on the slope after 5 hours? Show your work.
e. Suppose the snow machine is turned off at time $t=10$. Write, but do not solve, an equation that could be solved to find the time $t=K$ when the snow would all be melted.

2003 AP ${ }^{\circledR}$ CALCULUS AB Problem \#3

t (minutes)	$R(t)$ (gallons per minute)
0	20
30	30
40	40
50	55
70	65
90	70

The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a twicedifferentiable and strictly increasing function R of time t. The graph of R and a table of selected values of $R(t)$, for the time interval $0 \leq t \leq 90$ minutes, are shown above.
(a) Use data from the table to find an approximation for $R^{\prime}(45)$. Show the computations that lead to your answer. Indicate units of measure.
(b) The rate of fuel consumption is increasing fastest at time $t=45$ minutes. What is the value of $R^{\prime \prime}(45)$?

Explain your reasoning.
(c) Approximate the value of $\int_{0}^{90} R(t) d t$ using a left Riemann sum with the five subintervals indicated by the data in the table. Is this numerical approximation less than the value of $\int_{0}^{90} R(t) d t$? Explain your reasoning.
(d) For $0<b \leq 90$ minutes, explain the meaning of $\int_{0}^{b} R(t) d t$ in terms of fuel consumption for the plane.

Explain the meaning of $\frac{1}{b} \int_{0}^{b} R(t) d t$ in terms of fuel consumption for the plane. Indicate units of measure in both answers.

AP Calculus AB

Name: \qquad
Unit 6 - Day 7 - Assignment

1. Using a right Riemann sum over the given intervals, estimate $\int_{5}^{35} F(t) d t$
A. 730

t	5	13	22	27	35
$F(t)$	44	12	13	17	22

B. 661
C. 564
D. 474
E. 325
2. For the first six seconds of driving, a car accelerates at a rate of $a(t)=10 \sin \left(1+\frac{t^{2}}{10}\right)$ meters per second ${ }^{2}$. Which one of the following expressions represents the velocity of the car when it first begins to decelerate?
A. $\int_{0}^{0.775} a(t) d t$
B. $\int_{0}^{2.389} a(t) d t$
C. $\int_{0}^{1.715} a(t) d t$
D. $\int_{0}^{4.627} a(t) d t$
E. $\int_{0}^{3.830} a(t) d t$
3. The rate at which gas is flowing through a large pipeline is given in thousands of gallons per month in the chart below.

t (months)	0	3	6	9	12
$R(t)$ $(1000$ gallons per month $)$	43	62	56	60	68

Use a midpoint Riemann sum with two equal subintervals to approximate the number of gallons that pass through the pipeline in a year.
A. 594,000
B. 672,000
C. 732,000
D. 744,000
E. $1,068,000$
4. Let f be a continuous function on the closed interval $[1,11]$. If the values of f are given below at three points, use a trapezoidal approximation to find $\int_{1}^{11} f(x) d x$ using two subintervals.
A. 165
B. 172
C. 190.5
D. 40
E. 80

x	1	9	11
$f(x)$	23	14	10

5. If $\int_{a}^{b} f(x) d x=2 a-3 b$, then $\int_{a}^{b}[f(x)+3] d x=$
A. $2 a-3 b+3$
B. $3 b-3 a$
C. $-a$
D. $5 a-6 b$
E. $a-6 b$

Use the table below to answer questions 6 and 7. Suppose the function $f(x)$ is a continuous function and f is the derivative of $F(x)$.

x	0	1	2	3
$f(x)$	-1	0	1	-2
$F(x)$	4	3	A	8

6. What is $\int_{1}^{3} f(x) d x$?
A. 5
B. 8
C. 4
D. 19
E. Cannot be determined
7. If the area under the curve of $f(x)$ on the interval $0 \leq x \leq 2$ is equal to the area under the curve $f(x)$ on the interval $2 \leq x \leq 3$, then what is the value of A ?
A. 4
B. 2
C. 5.5
D. 6
E. Cannot be determined

2004 AP ${ }^{\oplus}$ CALCULUS AB

Problem \#1

Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars per minute. The traffic flow at a particular intersection is modeled by the function F defined by

$$
F(t)=82+4 \sin \left(\frac{t}{2}\right) \text { for } 0 \leq t \leq 30,
$$

where $F(t)$ is measured in cars per minute and t is measured in minutes.
(a) To the nearest whole number, how many cars pass through the intersection over the 30 -minute period?
(b) Is the traffic flow increasing or decreasing at $t=7$? Give a reason for your answer.
(c) What is the average value of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.
(d) What is the average rate of change of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.

2001 AP® CALCULUS AB Problem \#2

t (days)	$W(t)$ $\left({ }^{\circ} \mathrm{C}\right)$
0	20
3	31
6	28
9	24
12	22
15	21

The temperature, in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15 -day period.
(a) Use data from the table to find an approximation for $W^{\prime}(12)$. Show the computations that lead to your answer. Indicate units of measure.
(b) Approximate the average temperature, in degrees Celsius, of the water over the time interval $0 \leq t \leq 15$ days by using a trapezoidal approximation with subintervals of length $\Delta t=3$ days.
(c) A student proposes the function P, given by $P(t)=20+10 t e^{(-t / 3)}$, as a model for the temperature of the water in the pond at time t, where t is measured in days and $P(t)$ is measured in degrees Celsius. Find $P^{\prime}(12)$. Using appropriate units, explain the meaning of your answer in terms of water temperature.
(d) Use the function P defined in part (c) to find the average value, in degrees Celsius, of $P(t)$ over the time interval $0 \leq t \leq 15$ days.

