AP Calculus AB Unit 6 – Day 7 – Assignment

Name: Answer Key*

1. Using a right Riemann sum over the given intervals, estimate $\int_{5}^{35} F(t)dt$

						The second second	
	t	/ 5	(13)	(22)	(27)	35	
	·					- Market Backer Street Street	
	F(t)	44	12	13	17	22	
	<u> </u>						

Α	. 730	
В	. 661	
C	. 564	_
	. 474	\geq
Е	. 325	

$$(8)(12) + (9)(13) + (5)(17) + (8)(22)$$

= 474

2. For the first six seconds of driving, a car accelerates at a rate of $a(t) = 10 \sin \left(1 + \frac{t^2}{10}\right)$ meters per second². Which one of the following expressions represents the velocity of the car when it first begins to decelerate - Acceleration begins to decrease

Begins to deur first at t=2389

3. The rate at which gas is flowing through a large pipeline is given in thousands of gallons per month in the chart below.

		gerzegekkennek Mendere (Menzan)	The state of the s	AND SERVICE OF THE PERSON	NR.Sperson
t	0	3	(6)	9	12
(months)				t Samuraki de jeur dalem il 7 men	e management y promise of the second
R(t)					
(1000 gallons	43	62	56	60	68
per month)					_

Use a midpoint Riemann sum with two equal subintervals to approximate the number of gallons that pass through the pipeline in a year.

E. 1,068,000

4. Let f be a continuous function on the closed interval [1, 11]. If the values of f are given below at three points, use a trapezoidal approximation to find $\int_{1}^{11} f(x)dx$ using two subintervals.

A. 165 B. 172		x	1	9	11)
C. 190.5 D. 40 E. 80	立(8)(23+14)+立(2)(14+10)	f(x)	23	14	10
2. 00	148 + 24 = 172				•

5. If
$$\int_{a}^{b} f(x)dx = 2a - 3b$$
, then $\int_{a}^{b} [f(x) + 3]dx =$

A.
$$2a-3b+3$$

B. $3b-3a$
C. $-a$
D. $5a-6b$
E. $a-6b$

$$\int_{0}^{6} f(x) dx + \int_{0}^{6} 3 dx$$

$$2a - 3b + 3x \int_{0}^{6} 2a - 3b + 3b - 3(a) = -a$$

Use the table below to answer questions 6 and 7. Suppose the function f(x) is a continuous function and f is the derivative of F(x).

X	0	1	2	3
f(x)	-1	0	1	-2
F(x)	4	3	A	8

6. What is
$$\int_{1}^{3} f(x)dx$$
? = $F(3) - F(1) = 9 - 3 = 5$
B. 8

- D. 19
- E. Cannot be determined

7. If the area under the curve of f(x) on the interval $0 \le x \le 2$ is equal to the area under the curve f(x) on the interval $2 \le x \le 3$, then what is the value of A?

$$\int_{0}^{2} f(x) dx = \int_{2}^{3} f(x) dx$$

$$F(2) - F(0) = F(3) - F(2)$$

$$A - 4 = 8 - A$$

$$2A = 12$$

$$A = 6$$

2004 AP® CALCULUS AB

calc. Active

Problem #1

Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars per minute. The traffic flow at a particular intersection is modeled by the function F defined by

$$F(t) = 82 + 4\sin\left(\frac{t}{2}\right)$$
 for $0 \le t \le 30$, \Box rate

where F(t) is measured in cars per minute and t is measured in minutes.

- (a) To the nearest whole number, how many cars pass through the intersection over the 30-minute period?
- (b) Is the traffic flow increasing or decreasing at t = D? Give a reason for your answer.
- (c) What is the average value of the traffic flow over the time interval $10 \le t \le 15$? Indicate units of measure.
- (d) What is the average rate of change of the traffic flow over the time interval $10 \le t \le 15$? Indicate units of measure.

$$F'(7) = -1.873$$
 Since $F'(7) < 0$, the traffic flow is decreasing at $t = 7$.

$$\frac{1}{15-10}\int_{10}^{15} 82+4\sin(\frac{t}{2})dt = \frac{t}{5}(409.496) = \frac{81.899 \text{ cars/min}}{15-10}$$

(a)
$$F(10) - F(15) = 78.104 - 85.752 = [1.518 cars | min2]$$

2001 AP® CALCULUS AB

Problem #2

1	W(t)
(days)	(°C)
0.	20
3	31
6	28
9	24
12	22
15	21

The temperature, in degrees Celsius (${}^{\circ}$ C), of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15-day period.

Calc. Active

- (a) Use data from the table to find an approximation for W'(12). Show the computations that lead to your answer. Indicate units of measure.
- (b) Approximate the average temperature in degrees Celsius, of the water over the time interval $0 \le t \le 15$ days by using a rapezoidal approximation with subintervals of length $\Delta t = 3$ days.
- (c) A student proposes the function P, given by $P(t) = 20 + 10te^{(-t/3)}$, as a model for the temperature of the water in the pond at time t, where t is measured in days and P(t) is measured in degrees Celsius. Find P'(12). Using appropriate units, explain the meaning of your answer in terms of water temperature.
- (d) Use the function P defined in part (c) to find the average value, in degrees Celsius, of P(t) over the time interval $0 \le t \le 15$ days.

(a)
$$W'(12) \approx W(9) - W(15) \approx \frac{24 - 21}{-6} = [-0.5 \cdot c/aay]$$

$$\frac{5}{2(3)(20+31)} + \frac{1}{2(3)(31+28)} + \frac{1}{2(3)}(28+24) + \frac{1}{2(3)}(24+22) + \frac{1}{2(3)}(22+21)$$

$$\frac{1}{15-0} \int_{0}^{15} w(4) = \frac{1}{15}(376.5) = 25.1°C$$

©
$$P'(t) = (10)(e^{-t/3}) + (10t)(e^{-t/3})(-\frac{1}{3}) = 10e^{-t/3} - \frac{19}{3}te^{-t/3}$$

 $P'(12) = 10e^{-12/3} - \frac{19}{3}(12)e^{-12/3} = 10e^{-t} - 40e^{-t} = -30e^{-t} = [-0.549 \text{ C/am}]$

This means that the temperature is decreasing at the rate of 0.549. Clay when t=12 days.

(15)
$$\frac{1}{15}$$
 $\frac{15}{5}$ $\frac{15}{20+10te^{-t/3}}$ at $=\frac{1}{15}(3810.7162) = 125.75700$