AP Calculus

Unit 6 - Basic Integration \& Applications

Day 4 Notes: Properties of Definite Integrals

1. $\int_{a}^{a} f(x) d x=$
2. Given that $a<c<b, \int_{a}^{b} f(x) d x=$
3. If $\int_{a}^{b} f(x) d x=K$, then $\int_{b}^{a} f(x) d x=$
4. Given that $b<a$, then $\int_{a}^{b} f(x) d x=$
5. If k is a constant, then $\int_{a}^{b} k \cdot f(x) d x=$
6. $\int_{a}^{b}[f(x) \pm g(x)] d x=$

7. Given that $f(x)$ is an even function, $\int_{-a}^{a} f(x) d x=$

8. Given that $f(x)$ is an odd function, $\int_{-a}^{a} f(x) d x=$

If $\int_{0}^{3} f(x) d x=6$ and $\int_{3}^{7} f(x) d x=-8$, determine the value of each of the following integrals using the properties of definite integrals. Explain how you arrived at your answer for each.

$\int_{3}^{0} f(x) d x$	$\int_{0}^{7} f(x) d x$
$\int_{3}^{3} f(x) d x$	$\int_{7}^{3} 3 f(x) d x$

Pictured to the right is the graph of a function $f(x)$.
What is the value of $\int_{0}^{3} f(x) d x$?

2003 AP $^{\circledR}$ CALCULUS AB Problem \#4

Let f be a function defined on the closed interval $-3 \leq x \leq 4$ with $f(0)=3$. The graph of f^{\prime}, the derivative of f, consists of one line segment and a semicircle, as shown above.
a. On what intervals, if any, is f increasing. Justify your reasoning.
b. Find the x - coordinate of each point of inflection of the graph of f on the open interval $-3<x$ < 4 . Justify your answer.
c. Find an equation for the line tangent to the graph of f at the point $(0,3)$.
d. Find $f(-3)$ and $f(4)$. Show the work that leads to your answers.

AP Calculus AB

Name: \qquad
Unit 6 - Day 4 - Assignment
Given $\int_{2}^{6} f(x) d x=10$ and $\int_{2}^{6} g(x) d x=-2$, find the values of each of the following definite integrals, if possible, by rewriting the given integral using the properties of integrals.

1. $\int_{2}^{6}[f(x)+g(x)] d x$	2. $\int_{2}^{6}[2 f(x)-3 g(x)] d x$	3. $\int_{2}^{6} 2 x+2 g(x) d x$

Given $\int_{-2}^{4} f(x) d x=-6$ and $\int_{-2}^{4} g(x) d x=4$, find the values of each of the following definite integrals. Rewrite the given integral using the properties of integrals. Then, find the value.

4. $\int_{-2}^{4}[f(x)+4] d x$	5. $\int_{-2}^{4}[3 g(x)+x] d x$

Pictured below is the graph of $f^{\prime}(x)$, the first derivative of a function $f(x)$. Use the graph to answer the following questions $8-10$.

Graph of $f^{\prime}(x)$
7. What is the value of $\int_{0}^{7} f^{\prime}(x) d x$

8. If $f(0)=-3$, what is the value of $f(3)$?
9. If $f(3)=-1$, what is the value of $f(7)$?

The graph of $f^{\prime}(x)$, the derivative of a function, $f(x)$, is pictured below on the interval $[-2,6]$.
Write and find the value of a definite integral to find each of the indicated values of $f(x)$ below.
Also, $f(-2)=5$.

10. Find the value of $f(0)$.

11. Find the value of $f(6)$.

Graph off ${ }^{\prime}$

t (seconds)	$v(t)$ (feet per second)
0	0
5	12
10	20
15	30
20	55
25	70
30	78
35	81
40	75
45	60
50	72

3. The graph of the velocity $v(t)$, in $\mathrm{ft} / \mathrm{sec}$, of a car traveling on a straight road, for $0 \leq t \leq 50$, is shown above. A table of values for $v(t)$, at 5 second intervals of time t, is shown to the right of the graph.
(a) During what intervals of time is the acceleration of the car positive? Give a reason for your answer.
(b) Find the average acceleration of the car, in $\mathrm{ft} / \mathrm{sec}^{2}$, over the interval $0 \leq t \leq 50$.
(c) Find one approximation for the acceleration of the car, in $\mathrm{ft} / \mathrm{sec}^{2}$, at $t=40$. Show the computations you used to arrive at your answer.
(d) Approximate $\int_{0}^{50} v(t) d t$ with a Riemann sum, using the midpoints of five subintervals of equal length. Using correct units, explain the meaning of this integral.

1999 AP Calculus AB

3. The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table above shows the rate as measured every 3 hours for a 24 -hour period.
(a) Use a midpoint Riemann sum with 4 subdivisions of equal

t (hours)	$R(t)$ (gallons per hour)
0	9.6
3	10.4
6	10.8
9	11.2
12	11.4
15	11.3
18	10.7
21	10.2
24	9.6

