AP Calculus
Unit 6 — Basic Integration & Applications

Day 1 Notes: Flpdmg Anti-Derivatives of Polynomial-Type
Functions
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If you had to explain to someone how to find th of a polynomial-type function, what
would you say?
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To find thyou would do the opposite of each one of those operations and in the
reverse order. Therefore, to find the anti-derivative of a polynomial-type function.. .,
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The anti-derivative (indefinite integral) of a function, fx), is denoted by the notatio@fﬂ(i)d 3)

. So when finding the anti-derivative of a function, you are finding the function of which7(x) s
the first derivative. This will enable us, if given f'or £ to be able to find . However, if

L[ f'(x)dx = f(x), what problem do you foresee?
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Find each of the following anti-derivatives.
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We learned that —%[sm x]= cos x and —[cos x]= —sin x . Similarly, write what the anti-

derivatives of sine and cosine are. 7
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Find each of the following anti-derivatives.
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Use the given information about f'and f"te find f{x).
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An evergreen nursery usually sells a certain shrub after 6 years of growth and shaping.

The growth rate during those 6 years is-approximated by the differential equation
% dexNotiNg,

where ¢ is the time in years and /2 is the heightin centimeters. The seedlings are 12

centimeters tall when planted, at =0, n LD) =\Z

a. Find the value of the differential equation above when ¢ = 3. Using correct units of measure,
explain what this value represents in the context of this problem.
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b. Find an equation for A(¢), the height of the shrubs at any year £. Then, determine how tall the
shrubs are when they are sold.
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A particle moves along the x — axis at a velocity of V(f) =——, for£> 0. At time =1, its

position is 4. ' N («'\'3 < t_t-\]& PLD - L_’,

a. What is the(acceleratioﬁbf the particle b. What is th of the

particle when =97 e 3/9_ whent=9?l’
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