AP Calculus

Unit 6 - Basic Integration \& Applications

Day 1 Notes: Finding Anti-Derivatives of Polynomial-Type Functions

If you had to explain to someone how to find the derivative of a polynomial-type function, what would you say?

To find the anti-derivative, you would do the opposite of each one of those operations and in the reverse order. Therefore, to find the anti-derivative of a polynomial-type function....

The anti-derivative (indefinite integral) of a function, $f(x)$, is denoted by the notation $\int f(x) d x$. So when finding the anti-derivative of a function, you are finding the function of which $f(x)$ is the first derivative. This will enable us, if given f ' or f "to be able to find f. However, if $\int f^{\prime}(x) d x=f(x)$, what problem do you foresee?

Find each of the following anti-derivatives.

We learned that $\frac{d}{d x}[\sin x]=\cos x$ and $\frac{d}{d x}[\cos x]=-\sin x$. Similarly, write what the antiderivatives of sine and cosine are.

$$
\int \cos x d x=
$$

Find each of the following anti-derivatives.

$\int(2 \sin x+\cos x) d x$	$\int\left(t^{2}-\sin t\right) d t$

	$\int(4 x-3 \cos x) d x$

Use the given information about f^{\prime} and f "to find $\boldsymbol{f}(\boldsymbol{x})$.

$1 . f^{\prime \prime}(x)=2$	$f^{\prime}(2)=5$	$f(2)=10$	2. $f^{\prime \prime}(x)=x^{-3 / 2}$	$f^{\prime}(4)=2$	$f(0)=0$

An evergreen nursery usually sells a certain shrub after 6 years of growth and shaping. The growth rate during those 6 years is approximated by the differential equation

$$
\frac{d h}{d t}=1.5 t+5
$$

where \boldsymbol{t} is the time in years and \boldsymbol{h} is the height in centimeters. The seedlings are $\mathbf{1 2}$ centimeters tall when planted, at $t=0$.
a. Find the value of the differential equation above when $t=3$. Using correct units of measure, explain what this value represents in the context of this problem.
b. Find an equation for $h(t)$, the height of the shrubs at any year t. Then, determine how tall the shrubs are when they are sold.

A particle moves along the \boldsymbol{x} - axis at a velocity of $v(t)=\frac{1}{\sqrt{t}}$, for $\boldsymbol{t}>\boldsymbol{0}$. At time $\boldsymbol{t}=\mathbf{1}$, its position is 4.
a. What is the acceleration of the particle particle when $t=9$?
b. What is the position of the when $t=9$?

AP Calculus AB

Name: \qquad
Unit 6 - Day 1 - Assignment
For problems $1-12$, find the indefinite integrals below.

1. $\int(\sqrt[3]{x}+3) d x$	2. $\int\left(2 x-3 x^{2}\right) d x$
3. $\int x^{2}\left(2 x^{2}+3 x\right) d x$	4. $\int\left(x^{3 / 2}+2 x+1\right) d x$
5. $\int\left(\sqrt{x}+\frac{1}{2 \sqrt{x}}\right) d x$	
7. $\int y^{3} \sqrt{y} d y$	$6 . \int \frac{3 x^{2}-2 x+3}{x^{3}} d x$

9. $\int \frac{x^{3}+3}{\sqrt{x}} d x$	10. $\int(x+3)(x-3)^{2} d x$
11. $\int\left(\theta^{2}+\cos \theta\right) d \theta$	$12 . \int(\sqrt{x}-\sin x+2) d x$

For problems 13 and 14, find the indicated function based on the given information.

13. If $f^{\prime}(x)=2 x-\sin x$ and $f(0)=4$, find	14. If $f^{\prime \prime}(x)=x^{2}, f^{\prime}(0)=6$, and $f(0)=3$, find $f(x)$.
$f(x)$.	

