AP Calculus
Unit 5 — Applications of the Derivative — Part 2

Day 8 Notes: Solving Optimization Problems \&&%@ @
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General Approach to Solving Optimization Problems: /) %@Q(\
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1. Determine the quantity that is to b¢ maximized or minimized.
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2. Draw a picture, define a variable, or use some formula to identify the quantities not
valued.

3. Write a primary equation that represents the quantity that is to be optimized. (This
equation may or may not contain more than one variable.)

4. If the primary equation contains more than 1 variable, a secondary equation will need
to be written that involves the same variables so that one variable can be i1solated to show
a relationship between the variables.

5. Substitute the result of the secondary equation into the primary equation, if necessary,
and then differentiate the primary equation to find the maximum/minimum value desired.
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Example 2

A box is to be built from a rectangular piece of cardboard that is 25 cm wide and 40 cm long by
cutting out a square from each corner and then bending up thg sides. Find the size of the corner
square which will produce a container that will hold thg ginount of soup.
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the dimensions of the page be so that t @,ﬂ ount of paper is used?
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A rectangular page is to contain 24 square inches of print. The margins at the top and bottom %{‘(\ -
the page are to be 1 ¥ inches, and the magging on the left and right are to be 1 inch. What should O *’ ’
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Example 4

A rectangle is bounded by the x and y axes and the graph of ¥ = 3 — %x. What length and width
should the rectangle have so that its area is 4 ?
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