AP Calculus

Unit 5 - Applications of the Derivative - Part 2

Day 2 Notes: Mean Value Theorem \& Rolle's Theorem

Consider the values of a differentiable function, $f(x)$, in the table below to answer the questions that follow. Plot the points and connect them on the grid below.

x	0	2	4	6	8	10	12	14	16
$f(x)$	1	5	8	10	11	10	8	5	1

In calculus, the derivative has many interpretations. One of the most important interpretations is that the derivative represents the Rate of Change of a Function. When speaking of rate of change, there are two rates of change that can be found that are associated with a functionaverage rate of change and instantaneous rate of change.

Average Rate of Change of $f(x)$ on an Interval at a Point
\square
Find the average rate of change of $f(x)$ on the interval [2, 12].

Instantaneous Rate of Change of $\boldsymbol{f}(\boldsymbol{x})$
\square
Is the instantaneous rate of change of at $x=4$ greater than the rate of change at $x=6$? Justify.

Rolle's Theorem

Consider the function, $f(x)$, presented on the previous page. Does Rolle's Theorem apply on the following intervals? Explain why or why not?

Interval $[2,14]$	
Interval	
$[2,10]$	

For each of the functions below, determine whether Rolle's Theorem is applicable or not. Then, apply the theorem to find the values of c guaranteed to exist.

1. $g(x)=9 x^{2}-x^{4}$ on the interval $[-3,0]$	$2 . g(x)=\frac{\sin 2 x}{x+2}$ on the interval $[-4,-1]$

Rolle's Theorem guarantees that if a function is continuous on the closed interval $[a, b]$, differentiable on the open interval (a, b), and $f(a)=f(b)$, then there is guaranteed to exist a value of c on (a, b) where the instantaneous rate of change is equal to zero.

The Mean Value Theorem is similar. In fact, Rolle's Theorem is a specific case of what is known in calculus as the Mean Value Theorem.

Mean Value Theorem

Consider the function $h(x)=3-\frac{5}{x}$. The graph of $h(x)$ is pictured below. Does the M.V.T. apply on the interval $[-1,5]$? Explain why or why not.

Does the M.V.T. apply on the interval $[1,5]$? Why or why not?

Graphically, what does the M.V.T. guarantee for the function on the interval $[1,5]$? Draw this on the graph to the left.

Apply the M.V.T. to find the value(s) of c guaranteed for $h(x)$ on the interval [1,5]

Explain why you cannot apply the Mean Value Theorem for $f(x)=x^{\frac{2}{3}}-2$ on the interval $[-1,1]$.

Find the equation of the tangent line to the graph of $f(x)=2 x+\sin x+1$ on the interval $(0, \pi)$ at the point which is guaranteed by the mean value theorem.

The Mean Value Theorem guarantees that if a function is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there is guaranteed to exist a value of c where the instantaneous rate of change at $x=c$ is equal to the average rate of change of f on the interval $[a, b]$.

AP Calculus AB

Name: \qquad
Unit 5 - Day 2 - Assignment
For the exercises $1-5$, determine whether Rolle's Theorem can be applied to the function on the indicated interval. If Rolle's Theorem can be applied, find all values of c that satisfy the theorem.

| 1. $f(x)=x^{2}-4 x$ on the interval $0 \leq x \leq 4$ | 2. $f(x)=(x+4)^{2}(x-3)$ on the interval $-4 \leq x \leq 3$ |
| :--- | :--- | :--- |
| 3. $f(x)=4-\|x-2\|$ on the interval $-3 \leq x \leq 7$ | $4 . f(x)=\sin x$ on the interval $0 \leq x \leq 2 \pi$ |

5. $f(x)=\cos 2 x$ on the interval $\frac{\pi}{3} \leq x \leq \frac{2 \pi}{3}$

For exercises $6-9$, determine whether the Mean Value Theorem can be applied to the function on the indicated interval. If the Mean Value Theorem can be applied, find all values of c that satisfy the theorem.

6. $f(x)=x^{3}-x^{2}-2 x$ on $-1 \leq x \leq 1$	7. $f(x)=\sqrt{x-3}$ on $3 \leq x \leq 7$
8.	

