AP Calculus

Unit 3 - Rules of Differentiation

Day 6 Notes: Derivatives of Inverse Functions

Given a function, $f(x)$, the inverse function, $f^{-1}(x)$, is numerically defined to be

Graphical Representation of the Inverse	Analytical Representation of the Inverse

Consider the two functions, $f(x)$ and $g(x)$, represented numerically below. Answer the questions that follow.

x	$f(x)$	$g(x)$
-2	3	1
1	2	-2

Complete the table of values below.	Complete the table of values below.	Find the value of $f\left(g^{-1}(-2)\right)$. $x$$f^{-1}(x)$		$g^{-1}(x)$		
Find the value of $f^{-1}(f(1))$.	Find the value of $g^{-1}\left(f^{-1}(2)\right)$					Find the value of
:---						
$f^{-1}\left(g\left(g^{-1}(1)\right)\right)$.						

Finding a Formula for the Derivative of an Inverse

Differentiate both sides of the equation below.

$$
f\left[f^{-1}(x)\right]=x
$$

Suppose that $f(x)=3 x+2$ and $f^{\prime}(-2)=3$. What is the value of $\left[f^{-1}(-4)\right]^{\prime}$?

Given to the right is a table of values for f, g, f^{\prime}, and g^{\prime}. Use the values in the table to find each indicated value in the boxes below.

x	f	g	f^{\prime}	g^{\prime}
-2	1	2	0	3
0	-4	-3	-1	2
1	3	-2	2	1
3	1	1	-3	-2

Find the value of $\left[f^{-1}(3)\right]^{\prime}$.	Find the value of $\left[g^{-1}(-2)\right]^{\prime}$.
Find the value of $\left[g^{-1}(1)\right] '$. Then, find the equation of the line tangent to the graph of g^{-1} when $x=1$.	Estimate the value of $f^{\prime}(2)$. Based on this value, what conclusion can be reached about the graph of f when $x=2$? Explain your reasoning.

Name:

\qquad
Unit 3 - Day 6 - Assignment

MULTIPLE CHOICE

1. Which of the following statements can be made about the graph of the function $h(x)=\frac{\ln (\cos x)}{\tan x}$ when $x=\frac{\pi}{2}$.
A. The graph of $h(x)$ is increasing.
B. The graph of $h(x)$ is decreasing.
C. No conclusion can be made about the graph of $h(x)$.
D. The graph of $h(x)$ has a horizontal tangent.
2. Consider the graph of $f(x)$ to the right to determine which of the following statements is/are true.
I. $f^{\prime}(x)=0$ when $x=3$.
II. $f^{\prime}(2.5)>0$.
III. On the interval $(-4,5)$ there are three values of x at which $f(x)$ is not differentiable.
A. II and III only
B. I and II only
C. III only

D. I, II and III
3. Let $f(7)=0, f^{\prime}(7)=14, g(7)=1$ and $g^{\prime}(7)=\frac{1}{7}$. Find $h^{\prime}(7)$ if $h(x)=\frac{f(x)}{g(x)}$.
A. 98
B. -14
C. -2
D. 14
4. The graph to the right shows data of a function, $H(t)$, which shows the relationship between temperature in ${ }^{\circ} \mathrm{C}\left(y\right.$-axis) and the time in hours (x-axis). What does the value of $H^{\prime}(6)$ represent?
A. $H^{\prime}(6)$ represents the temperature after 6 hours measured in ${ }^{\circ} \mathrm{C}$.
B. $H^{\prime}(6)$ represents the rate at which the temperature is changing after 6 hours measured in ${ }^{\circ} \mathrm{C}$.
C. $H^{\prime}(6)$ represents the temperature after 6 hours measured in ${ }^{\circ} \mathrm{C}$ per hour
D. $H^{\prime}(6)$ represents the rate at which the temperature is changing after 6 hours measured in ${ }^{\circ} \mathrm{C}$ per hour.

5. The graph of $h(x)=2 \sqrt{x+4}+2$ is pictured below.

What is the value of $\left[h^{-1}(6)\right]^{\prime}$?
A. $\frac{1}{4}$
B. 2
C. 4
D. $\frac{1}{2}$

6. Find y^{\prime} if $y=x^{2} e^{x}$.
A. $2 x e^{x}$
B. $x\left(x+2 e^{x}\right)$
C. $x e^{x}(x+2)$
D. $2 x+e^{x}$
7. The function f is pictured to the right. At which of the following values of x is f defined and continuous but not differentiable.
I. $x=2$
II. $x=3$
III. $x=5$
A. II only
B. I only
C. II and III only
D. I and II only

FREE RESPONSE

The table below shows values of differentiable functions, $f(x)$ and $g(x)$, and their derivatives at selected values of x. Use the table of values below to answer each of the questions below.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	3	-1	2	5
1	3	2	3	-3
2	5	3	1	-2
3	10	4	0	-1

a. Approximate the value of $f^{\prime}(1.5)$? Explain why your answer is a good approximation of $f^{\prime}(1.5)$.
b. If $B(x)=\sqrt{g(x)}$, what is the equation of the tangent line drawn to $B(x)$ when $x=1$?
c. If $A(x)=x^{2} \ln (f(x))$, what is the value of $A^{\prime}(2)$? What does this result say about the behavior of the graph of $A(x)$ when $x=2$? Give a reason for your answer.
d. Find the value of $\left[g^{-1}(3)\right]^{\prime}$. Then, find the equation of the line normal to the graph of $g^{-1}(x)$ at $x=3$.

