AP Calculus

Unit 3 - Rules of Differentiation

Day 5 Notes: The Relationship Between Continuity \& Differentiability

Example 1:

Consider the function $f(x)=\sqrt{x^{2}-4}$ at $x=2$.

Based on the graph, if $f(x)$ continuous at $x=2$? Explain your reasoning.

Find the value of $f^{\prime}(2)$ to determine if $f(x)$ is differentiable at $x=2$.

Example 2:

Consider the function $f(x)=x^{\frac{1}{3}}+2$ at $x=0$.
Based on the graph, if $f(x)$ continuous at $x=0$? Explain your reasoning.

Find the value of $f^{\prime}(0)$ to determine if $f(x)$ is differentiable at $x=0$.

Example 3:

Consider the function $f(x)=x^{\frac{2}{3}}+2$ at $x=0$.

Based on the graph, if $f(x)$ continuous at $x=0$? Explain your reasoning.

Find the value of $f^{\prime}(0)$ to determine if $f(x)$ is differentiable at $x=0$.

Graphically, a function is not differentiable if....
1)
2)
3)

In order for a function to be differentiable at a value of x, then two things must be true:
1)
2)

Example 4:

Consider the function $g(x)=\left\{\begin{array}{cl}\sqrt{x+1}, & 0 \leq x \leq 3 \\ 5-x, & 3<x \leq 5\end{array}\right.$ to answer the following questions.

Is $g(x)$ continuous at $x=3$? Show the complete analysis.

Is $g(x)$ differentiable at $x=3$? Show the complete analysis.

Example 5:

For what values of k and m will the function below be both continuous and differentiable at $x=3$?

$$
h(x)=\left\{\begin{array}{cc}
k \sqrt{x+1}, & 0 \leq x \leq 3 \\
m x+2, & 3<x \leq 5
\end{array}\right.
$$

AP Calculus AB
 Unit 3 - Day 5 - Assignment

Name: \qquad

Use the graph of $H(x)$, pictured to the right, to complete exercises 1-4.

1. The graph of $H(x)$ is continuous on its domain but not differentiable at all values on its domain. At what value on $-6<x<6$ is $H(x)$ not differentiable. Give a graphical reason for your answer.

2. Write an equation of $H(x)$ and show analytically that $H(x)$ is, in fact, continuous at the x - value that you identified in exercise 1. Show and explain your work.
3. Show analytically that $H(x)$ is, in fact, not differentiable at the x-value that you identified in exercise 1 . Show and explain your work.
4. Given the graph of $H(x)$ pictured above, find the equation of the tangent line to the graph of $P(x)=\sqrt{H(x)}$ when $x=3$.

A continuous function on the interval $-4<x<5, h(x)$, is described in the table below. Use the information to complete exercises 5-8.

\boldsymbol{x}	-4	-2	-1	0	$-4<x<0$	1	3	$0<x<3$	$3<x<5$	5
$\boldsymbol{h}(\boldsymbol{x})$	-5	-4	-2	1	Increasing $\&$ Concave Up	-1	-2	Decreasing $\&$ Concave Up	Increasing $\&$ Concave Up	0

5. Sketch a graph of $h(x)$.

6. Estimate the value of $h^{\prime}(-2)$. Does this value support the claim that $h(x)$ is increasing on the interval $-4<x<0$? Give a reason for your answer.
7. There are three x - values in the domain of h at which $h(x)$ is not differentiable. What are these three values and give a reason for why $h(x)$ is not differentiable at these values.
8. On what interval(s) of x is $h^{\prime}(x)>0$? Give a reason for your answer.
9. At what value(s) of x will the graph of $f(x)=2 e^{2 x}-3 x$ have a tangent line whose slope is 1 ?
10. The graph of $x-2 y=9$ is parallel to the normal line to the graph of $f(x)$ when $x=5$. What is the value of $f^{\prime}(5)$? Justify your answer.
11. Let f be defined by the function $f(x)=\left\{\begin{array}{rr}3-x, & x<1 \\ a x^{2}+b x, & x \geq 1\end{array}\right.$.
a. If the function is continuous at $x=1$, what is the relationship between a and b ? Explain your reasoning using limits.
b. Find the unique values of a and b that will make f both continuous and differentiable at $x=1$. Show your analysis using limits.
12. For what values of a and b will the function below be differentiable at $x=1$?
$f(x)= \begin{cases}3 a x^{2}+2 b x+1, & x \leq 1 \\ a x^{4}-4 b x^{2}-3 x, & x>1\end{cases}$
