AP Calculus

Unit 3 - Rules of Differentiation

Day 4 Notes: Finding the Derivative of the Natural Exponential \& Logarithmic Functions

Differentiation Rule for Natural Exponential Functions

Find the derivative of each of the following functions.

$f(x)=e^{\sin x}$	$f(x)=e^{2 x+3}$
$f(x)=3 e^{2 x}$	$f(x)=(2 x+3) e^{3 x}$
$f(x)=x^{2} e^{2 x}$	$f(x)=\sqrt{e^{2 x-6}}$

\square

Differentiation Rule for Natural Logarithmic Functions

Find the derivative of each of the following functions.

$f(x)=\ln (2 x-3)$	$f(x)=\ln \left(3 x^{2}+2 x\right)$
$f(x)=\ln (\cos x)$	$f(x)=\ln \sqrt{2 x-4}$

Finding Values of Derivatives Using the Graphing Calculator
For each of the functions below, find the value of $f^{\prime}(x)$ at the indicated value of x using the graphing calculator. Then, determine if the function is increasing, decreasing, has a horizontal tangent or has a vertical tangent. Give a reason for your answer.

Function	Value of $f^{\prime}(a)$	Is $f(x)$ increasing or decreasing, or does $f(x)$ have a horizontal or a vertical tangent?
1. $f(x)=3 e^{x} \sin x$	$a=-2$	
$f(x)=3 e^{x} \sin x$	$a=1$	
3. $f(x)=\frac{\ln (\cos x)}{x^{2}}$	$a=\frac{\pi}{3}$	
$f(x)=\frac{\ln (\cos x)}{x^{2}}$	$a=\pi$	
5. $f(x)=e^{\tan (0.34 x)}$	$a=0$	
6. $f(x)=5 \sin ^{2}(\ln x)$	$a=1$	

We already understand the derivative to be the SLOPE OF THE TANGENT LINE. Slope is a rate. Therefore, the derivative of a function actually represents the RATE AT WHICH A FUNCTION IS CHANGING.

7.	The number of people entering a concert can be modeled by the function $f(t)=560 e^{\sin t}$, where t represents the number of hours after the gates are open.
a.	Find the values of $f\left(\frac{1}{2}\right)$ and $f^{\prime}\left(\frac{1}{2}\right)$. Using correct units, explain what each value represents in the context of this problem.
b.	How many people have entered the concert 2 hours after the gates are opened? Is the number of people entering increasing or decreasing at this time? Justify your answer.

8.	After being poured into a cup, coffee cools so that its temperature, $T(t)$, is represented by the function $T(t)=70+110 e^{-t / 2}$, where t is measured in minutes and $T(t)$ is measured in degrees Fahrenheit.
a.	What is the temperature of the coffee 5 minutes after it has been poured into the cup? b.
Is the temperature decreasing faster 1 minute after it is poured or 3 minutes after it is poured? Give a reason for your answer.	

AP Calculus AB

Name:

\qquad
Unit 3 - Day 4 - Assignment
In exercises $1-10$, find the derivative of the function. Express your answer in simplest factored form.

1. $F(x)=x^{3} e^{2 x}$	2. $P(x)=e^{-2 x^{2}}$

7. $K(x)=\ln \sqrt{5 x-2}$	8. $F(x)=x^{2} e^{4 x}$
9. $T(x)=\frac{\ln x}{x-2}$	$10 . P(x)=\frac{e^{2 x}}{x^{3}}$

11. Find the equation of the tangent line to the graph of $y=\frac{\ln x}{4 x}$ when $x=1$.
