AP Calculus

Unit 3 - Rules of Differentiation

Day 2 Notes: Finding the Derivative of a Quotient of Two Functions

Example 1: Rewrite the function $f(x)=\frac{2 x^{3}-3 x^{2}+2}{x^{2}}$ as a function in polynomial form. Then, find $f^{\prime}(x)$.

Quotient Rule of Differentiation

To show that this rule works, let's apply this rule to the function $f(x)=\frac{2 x^{3}-3 x^{2}+2}{x^{2}}$ that we rewrote and differentiated as a polynomial-form above.

Example 2: We will now use the quotient rule to derive the derivative formulas for the remaining trigonometric functions. Rewrite each function in terms of sine and/or cosine and differentiate using the Quotient Rule.

$f(\theta)=\tan \theta$	$f(\theta)=\cot \theta$

$f(\theta)=\sec \theta$	$f(\theta)=\csc \theta$

Example 3: Find the derivative of each of the functions below by applying the quotient rule.

$$
f(x)=\frac{x^{2}-2 x}{x+2} \quad g(x)=\frac{\tan x}{x+2}
$$

Show, using the quotient rule, that if $f(x)=\frac{x^{2}+3 x+2}{x^{2}-1}$, then $f^{\prime}(x)=-\frac{3}{(x-1)^{2}}$.

Similar to the Product Rule, there is a very valuable lesson that we must learn when we are introduced to the quotient rule. In the box below, first factor and simplify the function,
$f(x)=\frac{x^{2}+3 x+2}{x^{2}-1}$, from above. Then, differentiate using the quotient rule

What is the lesson to be learned from the algebraic analysis above?

Let $f(x)$ and $g(x)$ be differentiable functions such that the following values are true.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
2	2	-1	9	-1
3	-5	-3	-4	6
4	1	7	8	-2

Estimate the value of $g^{\prime}(2.5)$.	If $p(x)=\frac{g(x)}{f(x)}$, what is the value of $p^{\prime}(4) ?$ What does this value say about the graph of $p(x)$ when $x=4$? Give a reason for your answer.

If $q(x)=2 x^{2}\left(\frac{f(x)}{g(x)}\right)$, what is the value of $q^{\prime}(2) ?$

Find the equation of the line tangent to the graph of $v(x)=\frac{3 x}{g(x)}$ when $x=3$.

AP Calculus AB

Name: \qquad
Unit 3 - Day 2 - Assignment
For exercises 1 and 2, show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified method.

$f(x)=\frac{2 x^{3}-3 x^{2}+3}{x^{2}}$	
Rewrite $f(x)$ in a polynomial- form first. Then apply the power rule to find $f^{\prime}(x)$. $f(x)=\frac{2 x^{3}-3 x^{2}+3}{x^{2}}$	
Apply the quotient rule to find	
$f^{\prime}(x)$.	
Find the equation of the line tangent to the graph of $g(x)=\frac{2 x^{2}-3 x}{3 x+1}$ when $x=-1$.	

Find the derivative of each of the following functions.

4. $h(x)=\frac{x}{x^{2}+1}$	5. $h(x)=\frac{x}{\sqrt{x}+1}$

Use the table below to complete exercises $8-10$.

\boldsymbol{x}	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-2	$\mathbf{1}$	-1	$\mathbf{2}$	$\mathbf{4}$
-1	$\mathbf{3}$	-2	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	-1	2	-2	-3

8. If $H(x)=\frac{2 f(x)}{g(x)}$, what is the equation of the tangent line when $x=-1$?
9. If $J(x)=\frac{3 x+\cos x}{f(x)}$, what is the value of $J^{\prime}(0)$?
10. If $K(x)=\frac{4 x+f(x)}{3-g(x)}$, what is the slope of the normal line when $x=-2$?
