AP Calculus Unit 3 – Rules of Differentiation

Day 1 Notes: Finding the Derivative of a Product of Two Functions

Example 1: Rewrite the function $f(x) = (2x - 3)(x^2 - 2x + 1)$ as a cubic function. Then, find f'(x). What does this equation of f'(x) represent, again?

Product Rule of Differentiation

To show that this rule works, let's apply this rule to the function $f(x) = (2x - 3)(x^2 - 2x + 1)$ that we rewrote and differentiated as a polynomial above.

Students often wonder why this rule is so important if we could just rewrite as a polynomial and easily differentiate it. The answer to that question is simple. If it is possible to rewrite as a polynomial, always do so. But in the case of the function $g(x) = x^2 \sin x$, there is no way to rewrite as a polynomial.

Example 2: Apply the product rule to find the slope of the normal line to the graph of $g(x) = x^2 \sin x$ when $x = \pi$.

$f(x) = (2x^2 + 3x)(x^2 - 3)$	$g(x) = \sqrt{x} \left(x^2 - 3x + 2 \right)$
$f(x) = x^3 \sin x$	$h(x) = (3x+2)\cos x$
$g(x) = 3\theta + \theta \sin \theta$	$h(x) = \sin x \cos x$

Example 3: Use the product rule to find the derivative of each of the following functions.

Example 4: Find the equation of the line tangent to the graph of $g(t) = t^2 \cos t$ when $t = \frac{\pi}{6}$.

Example 5: Below are graphs of two functions—f(x) and g(x). Let $P(x) = f(x) \cdot g(x)$ and let $R(x) = x^2 \cdot g(x)$. Use the graphs to answer the questions that follow.

	X	f(x)	g(x)	f'(x)	g'(x)	
	4	1	7	2	-3	
	3	-2	-3	-4	2	
	-1	2	-2	1	-1	
					•	
Esti	mate the value of	f'(3.5).	I	fq(x) = 2f(x) - 4	$\frac{1}{g(x)}$, what is the	value of <i>q</i> '(4)?
If p	(x) = -2f(x)g(x)	, what is the value	e of p'(3)? F	Find the equation $f(x) = x^3 \cdot f(x)$ where $f(x) = x^3 \cdot f(x)$ where $f(x) = x^3 \cdot f(x)$ where $f(x) = x^3 \cdot f(x)$ is the function of	of the line tangent then $x = -1$.	to the graph of
If k	$\overline{f(x)} = (2f(x) + 3)$	(3-g(x)), what is	the value of k'(3)?		

Exa	mple 6: I	Let $f(x)$ a	and $g(x)$ be	differe	entiable	functions	such	that the	follo	wing va	alues a	re tr	rue.
			f(m)			(m)		f'(x)		a'	(\mathbf{r})		

AP Calculus AB Unit 3 – Day 1 – Assignment

Name: _____

In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified method.

1. $f(x) = (x^{2} + 2x)(x - 3)$ Rewrite $f(x)$ as a polynomial first. Then apply the power rule	
to find $f'(x)$.	
2.	
$f(x) = \left(x^2 + 2x\right)\left(x - 3\right)$	
Apply the product rule to find $f'(x)$.	

For exercises 3-5, find the derivative of each function.

Find the slope of the normal line drawn to the graph of each function at the indicated value of *x*.

6. $g(x) = \sqrt{x} \sin x$ when $x = \pi$	7. $h(x) = \sin x(\sin x + \cos x)$ when $x = \frac{\pi}{4}$

For each of the functions below, find the equation of the tangent line drawn to the graph of g(x) at the indicated value of x.

8. $g(x) = \sqrt{x}(2x^2 - 4)$ when $x = 4$	9. $g(x) = x^2 \cos x$ when $x = \frac{\pi}{2}$

x	f(x)	f'(x)	g(x)	g'(x)
-2	1	-1	2	4
-1	3	-2	1	1
0	-1	2	-2	-3

Use the table below to complete exercises 10 - 12.

	T
10. If $H(x) = 2f(x) \cdot g(x)$, what is the	11. If $J(x) = g(x) \cdot \sin x$, what is the value of
aquation of the tengent line when $x = -12$	I'(0)
equation of the tangent line when $x = -1$?	J (0) ?
12. If $K(x) = (4x - f(x))(2g(x) - 2)$, what is th	e slope of the normal line when $x = -2$?
	•