Day 1 Notes: Finding the Derivative of a Product of Two Functions

Example 1: Rewrite the function $f(x)=(2 x-3)\left(x^{2}-2 x+1\right)$ as a cubic function. Then, find $f^{\prime}(x)$. What does this equation of $f^{\prime}(x)$ represent, again?

Product Rule of Differentiation

To show that this rule works, let's apply this rule to the function $f(x)=(2 x-3)\left(x^{2}-2 x+1\right)$ that we rewrote and differentiated as a polynomial above.

Students often wonder why this rule is so important if we could just rewrite as a polynomial and easily differentiate it. The answer to that question is simple. If it is possible to rewrite as a polynomial, always do so. But in the case of the function $g(x)=x^{2} \sin x$, there is no way to rewrite as a polynomial.

Example 2: Apply the product rule to find the slope of the normal line to the graph of $g(x)=x^{2} \sin x$ when $x=\pi$.

Example 3: Use the product rule to find the derivative of each of the following functions.

$f(x)=\left(2 x^{2}+3 x\right)\left(x^{2}-3\right)$	$g(x)=\sqrt{x}\left(x^{2}-3 x+2\right)$
$f(x)=x^{3} \sin x$	$h(x)=(3 x+2) \cos x$
$g(x)=3 \theta+\theta \sin \theta$	

Example 4: Find the equation of the line tangent to the graph of $g(t)=t^{2} \cos t$ when $t=\frac{\pi}{6}$.

Example 5: Below are graphs of two functions- $f(x)$ and $g(x)$. Let $P(x)=f(x) \cdot g(x)$ and let $R(x)=x^{2} \cdot g(x)$. Use the graphs to answer the questions that follow.

$\left.\begin{array}{|l|l|}\hline \text { If } g^{\prime}(-4)=2 \text {, what is the value of } P^{\prime}(-4) ? & \text { If } R^{\prime}(-2)=20 \text {, what is the value of } g^{\prime}(-2) ? \\ \hline \text { Find the equation of the line tangent to the } \\ \text { graph of } P(x) \text { when } x=-4 .\end{array} \quad \begin{array}{r}\text { Find the equation of the line tangent to the } \\ \text { graph of } R(x) \text { when } x=-2 .\end{array}\right]$

Example 6: Let $f(x)$ and $g(x)$ be differentiable functions such that the following values are true.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
4	1	7	2	-3
3	-2	-3	-4	2
-1	2	-2	1	-1

Estimate the value of $f^{\prime}(3.5)$.	If $q(x)=2 f(x)-4 g(x)$, what is the value of $q^{\prime}(4) ?$

If $k(x)=(2 f(x)+3)(3-g(x))$, what is the value of $k^{\prime}(3) ?$

AP Calculus AB

Name: \qquad
Unit 3 - Day 1 - Assignment
In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified method.

1.	
$f(x)=\left(x^{2}+2 x\right)(x-3)$	
Rewrite $f(x)$ as a polynomial first. Then apply the power rule to find $f^{\prime}(x)$.	
2.	
Apply the product rule to find $f^{\prime}(x)$.	

For exercises $3-5$, find the derivative of each function.

3. $f(x)=\left(x^{2}+2\right)\left(x^{2}-2 x\right)$	5. $f(x)=\sqrt[3]{x}\left(x^{2}+4\right)$
4. $f(x)=\left(x^{3}-3 x\right)\left(2 x^{2}+3 x+5\right)$	

Find the slope of the normal line drawn to the graph of each function at the indicated value of x.

6. $g(x)=\sqrt{x} \sin x$ when $x=\pi$	7. $h(x)=\sin x(\sin x+\cos x)$ when $x=\frac{\pi}{4}$

For each of the functions below, find the equation of the tangent line drawn to the graph of $g(x)$ at the indicated value of x.

8. $g(x)=\sqrt{x}\left(2 x^{2}-4\right)$ when $x=4$	9. $g(x)=x^{2} \cos x$ when $x=\frac{\pi}{2}$

Use the table below to complete exercises $10-12$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-2	1	-1	2	4
-1	3	-2	1	1
0	-1	2	-2	-3

10. If $H(x)=2 f(x) \cdot g(x)$, what is the equation of the tangent line when $x=-1$?
11. If $J(x)=g(x) \cdot \sin x$, what is the value of $J^{\prime}(0)$?
12. If $K(x)=(4 x-f(x))(2 g(x)-2)$, what is the slope of the normal line when $x=-2$?
