Day 4 Notes: Limit-Based Continuity

Three Part Definition of Continuity:

(used to determine if a function, $\mathrm{f}(\mathrm{x})$, is continuous or not at $\mathrm{x}=\mathrm{a}$.)
I.
II.
III.

Example 1: The graph of the function, $G(x)$, pictured below has several x - values at which the function is not continuous. For each of the following x - values, use the three part definition of continuity to determine if the function is continuous or not.

a) $x=-8$
b) $x=-6$
c) $x=-4$

Example 2: Use the three part definition of continuity to determine if the given functions are continuous at the indicated values of x.
a) $\quad f(x)=\left\{\begin{array}{cc}-2 \sqrt{x+6}, & x<-2 \\ 3 x+2, & x=-2 \\ e^{x}+\cos (\pi x), & x>-2\end{array}\right.$ at $x=-2$
b) $g(x)=\left\{\begin{array}{cl}e^{x} \cos x, & x<\pi \\ e^{x} \tan \left(\frac{3 x}{4}\right), & x \geq \pi\end{array}\right.$ at $x=\pi$

Example 3: Consider the function, $f(x)$, to the right to answer the following questions.

$$
f(x)=\left\{\begin{array}{cc}
2, & x \leq-1 \\
m x+k, & -1<x<3 \\
-2, & x \geq 3
\end{array}\right.
$$

a. What two limits must equal in order for $f(x)$ to be continuous at $\boldsymbol{x}=\mathbf{- 1}$?
b. What two limits must equal in order for $f(x)$ to be continuous at $x=3$?
c. Determine the values of \boldsymbol{m} and \boldsymbol{k} so that the function is continuous everywhere.

AP Calculus AB

Name: \qquad
Unit 1 - Day 4 - Assignment

Limit - Based Continuity

For exercises $1-3$, determine if the function is continuous at each of the indicated values below. Use the three part definition of continuity to perform your analysis.

$1 . x=-5$	$2 . x=1$	$3 . x=-2$

4. Use the three part definition of continuity to graphically justify why $p(x)$ is discontinuous at $x=0$ and $x=2$.

5. For what values of k and m is the function $g(x)$ everywhere continuous? Use limits to set up your work.

$$
g(x)=\left\{\begin{array}{cc}
k x^{2}+m, & x<-1 \\
e^{\ln (2 x+3)}, & -1 \leq x \leq 3 \\
k x-m, & x>3
\end{array}\right.
$$

Find the value of a that makes each of the functions below everywhere continuous. Write the two limits that must be equal in order for the function to be continuous.
6. $f(x)= \begin{cases}4-x^{2}, & x<-1 \\ a x^{2}-1, & x \geq-1\end{cases}$
7. $f(x)= \begin{cases}x^{2}+x+a, & x<2 \\ a x^{3}-x^{2}, & x \geq 2\end{cases}$

