FORMULA.	DECTANCIUAD	DADANASTDIC	DOLAD
FORMULA:	RECTANGULAR	PARAMETRIC	POLAR
	$\frac{dy}{dx}$ (slope of curve.	dy dy/L	\leftarrow Convert to parametric.
DERIVATIVE	dx (stope of our co,	$\frac{dy}{dx} = \frac{/dt}{dx/dx}$	$x = rcos\theta$
	velocity of a particle, etc.)	$\frac{dx}{dt}$	y = rsin0
	$d^2 y$	$d \left\lceil dy \right\rangle$	
2ND DERIVATIVE	$\frac{1}{dx^2}$	$\frac{1}{dt} \left[\frac{1}{dt} dx \right]$	\leftarrow Convert to parametric.
		$\frac{dx}{dx}$	
	b	$\int v dx$	θ_2
ARFA	$\int f(x) dx$	a j j cut	$\frac{1}{r^2} d\theta$
711271	a a	Note: a and b are limits for	$2 \frac{J}{\theta_1}$
		x . Convert to t_1 and t_2 .	
	b	b b	
	Disc: $\pi R^2 dx$	$\pi \int y^2 dx$	\leftarrow Convert to parametric.
VOLUME	a	a	
	Machari $\pi \int (\mathbf{P}^2 - \mathbf{r}^2) d\mathbf{r}$	Note: a and b are limits for	
	$\int_{a} \sqrt{1 - r} \int_{a} dx$	x . Convert to t_1 and t_2 .	
ARC LENGTH	<i>b</i>	$t_2 \left[\left(dx \right)^2 \left(dy \right)^2 \right]$	
	$\int \sqrt{1 + [f'(x)]^2} dx$	$\int \left \int \frac{dx}{dt} \right + \left \frac{dy}{dt} \right dt$	$\int \sqrt{\left[r(\theta)\right]^2 + \left[r'(\theta)\right]^2} \ d\theta$
	а	$\int_{t_1} \bigvee (dt) (dt)$	а
SPEED	$ \mathbf{v}(t) $	$\left(\left(\frac{dx}{dx}\right)^2 + \left(\frac{dy}{dx}\right)^2\right)$	$\sqrt{[-\infty]^2 - [-\infty]^2}$
		$\int dt \int dt dt$	$\sqrt{[r(\theta)]} + [r'(\theta)]$
	t_2	$t_{e}^{t_{2}} \left[\left(dx \right)^{2} \left(dy \right)^{2} \right]$	$\int_{a}^{b} \sqrt{[x + \alpha]^2 + [x + \alpha]^2} + \alpha$
TOTAL DISTANCE	$\int v(t) dt$	$\int \sqrt{\left \frac{dx}{dt}\right } + \left \frac{dy}{dt}\right dt$	$\int \sqrt{[r(\theta)]} + [r'(\theta)] d\theta$
	t_1	$t_1 \bigvee (ui) (ui)$	a
		Arc length!	Arc length!
DOSITION	h		
POSITION	$s(b) - s(a) = \int_{a}^{b} v(t) dt$	(x(t), y(t)), where	
		$r(t) = r(t) - \int_{0}^{t_2} r'(t) dt$	
		$x(t_2) - x(t_1) = \int_t^t x(t) dt$	\leftarrow Convert to parametric.
		and	
		$y(t_2) - y(t_1) = \int y'(t) dt$	
		J t ₁	

Other things to remember:

- ✓ Speed is increasing when the signs of velocity and acceleration are the same.
- ✓ If particle moves along a horizontal line (x-axis), it's moving left when $\frac{dx}{dt} < 0$ and right when $\frac{dx}{dt} > 0$.
- ✓ A particle is at rest when v(t) = 0 and a(t) = 0 for the same value of t.

✓ For parametrically defined curves, the velocity vector is $\langle x'(t), y'(t) \rangle$ and the acceleration vector is $\langle x''(t), y''(t) \rangle$.