FORMULA:	RECTANGULAR	PARAMETRIC	POLAR
DERIVATIVE	$\frac{d y}{d x}$ (slope of curve, velocity of a particle, etc.)	$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$	\leftarrow Convert to parametric. $\begin{aligned} & x=r \cos \theta \\ & y=r \sin \theta \end{aligned}$
2ND DERIVATIVE	$\frac{d^{2} y}{d x^{2}}$	$\frac{\frac{d}{d t}[d y / d x]}{d x / d t}$	\leftarrow Convert to parametric.
AREA	$\int_{a}^{b} f(x) d x$	$\int_{a}^{b} y d x$ Note: \boldsymbol{a} and \boldsymbol{b} are limits for x. Convert to t_{1} and t_{2}.	$\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} r^{2} d \theta$
VOLUME	$\begin{gathered} \text { Disc: } \pi \int_{a}^{b} R^{2} d x \\ \text { Washer: } \pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d x \end{gathered}$	$\pi \int_{a}^{b} y^{2} d x$ Note: \boldsymbol{a} and \boldsymbol{b} are limits for x. Convert to t_{1} and t_{2}.	\leftarrow Convert to parametric.
ARC LENGTH	$\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$	$\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$	$\int_{a}^{b} \sqrt{[r(\theta)]^{2}+\left[r^{\prime}(\theta)\right]^{2}} d \theta$
SPEED	$\|v(t)\|$	$\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$	$\sqrt{[r(\theta)]^{2}+\left[r^{\prime}(\theta)\right]^{2}}$
TOTAL DISTANCE	$\int_{t}^{t_{2}}\|v(t)\| d t$	$\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$ Arc length!	$\int_{a}^{b} \sqrt{[r(\theta)]^{2}+\left[r^{\prime}(\theta)\right]^{2}} d \theta$ Arc length!
POSITION	$s(b)-s(a)=\int_{a}^{b} v(t) d t$	$(x(t), y(t))$, where $x\left(t_{2}\right)-x\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} x^{\prime}(t) d t$ and $y\left(t_{2}\right)-y\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} y^{\prime}(t) d t$	\leftarrow Convert to parametric.

Other things to remember:

\checkmark Speed is increasing when the signs of velocity and acceleration are the same.
\checkmark If particle moves along a horizontal line (x -axis), it's moving left when $\frac{d x}{d t}<0$ and right when $\frac{d x}{d t}>0$.
\checkmark A particle is at rest when $\mathrm{v}(\mathrm{t})=0$ and $\mathrm{a}(\mathrm{t})=0$ for the same value of t .
\checkmark For parametrically defined curves, the velocity vector is $\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ and the acceleration vector is $\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle$.

