AP Calculus BC
 Unit 11 - REVIEW

Name:

\qquad

1. For time $t>0$, the position of a particle moving in the $x y$-plane is given by the parametric equations $x(t)=4 t+t^{2}$ and $y(t)=\frac{1}{3 t+1}$. What is the acceleration vector of the particle at $\mathrm{t}=1$?
2. Find the area of the common interior of the polar curves $r=4 \cos \theta$ and $r=2$.
3. Write an equation for the line tangent to the polar curve $r=2 \theta$ at $\theta=\frac{\pi}{2}$.
4. Find the equation of the tangent to the curve defined by $x=\sqrt{t}$ and $y=\sqrt{t-1}$ when $t=5$.
5. Find $\frac{d^{2} y}{d x^{2}}$ for the curve given by $x=\frac{1}{2} t^{2}$ and $y=t^{2}+t$.
6. Find all points of vertical tangency to the curve given by $x=\cos \theta$ and $y=4 \sin \theta$.
7. Find the total distance a particle travels along a path by $x=t^{2}+1$ and $y=4 t+3$ on the interval $-1 \leq t \leq 0$.
8. The position of a particle in the xy -plane is given by $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$, with $\frac{d y}{d t}=t^{2}+\cos \left(3 t^{2}\right)$. At $\mathrm{t}=0$, the particle is at the point $(3,1)$. Find the y-coordinate of the particle at $t=3$.
9. A particle follows a path defined parametrically by $x(t)=2 \sqrt{t-3}$ and $y(t)=3 t^{2}$. What is the speed of the particle at $\mathrm{t}=9$?
10. Find the area of the region enclosed by the graph of $x=\sin \theta, y=\sin ^{2} \theta$, the x -axis, and the vertical line $\mathrm{x}=1$.
11. Find $\frac{d y}{d x}$ for $r=3(1-\cos \theta)$ at $\theta=\pi$.
12. Find the tangents at the pole for the polar curve $r=2 \cos 3 \theta$.
13. Find the perimeter of one petal of the rose curve $r=4 \sin (3 \theta)$.
14. Find the points of intersection of the graphs of $r=2-3 \cos \theta$ and $r=\cos \theta$.
15. Find the area of the common interior region of $r=4 \sin \theta$ and $r=2$.
