AP Calculus BC

Unit 11 - Parametric Equations \& Polar Coordinates

Day 8 Notes: Polar Graphs \& Area (Day 2)

2005 BC Exam - \#2 - Calculator Active

The curve above is drawn in the $x y$-plane and is described by the equation in polar coordinates $r=\theta+\sin (2 \theta)$ for $0 \leq \theta \leq \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{d r}{d \theta}=1+2 \cos (2 \theta)$.
(a) Find the area bounded by the curve and the x-axis.
(b) Find the angle θ that corresponds to the point on the curve with
 x-coordinate -2 .
(c) For $\frac{\pi}{3}<\theta<\frac{2 \pi}{3}, \frac{d r}{d \theta}$ is negative. What does this fact say about r ? What does this fact say about the curve?
(d) Find the value of θ in the interval $0 \leq \theta \leq \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.

The graphs of the polar curves $r=2$ and $r=3+2 \cos \theta$ are shown in the figure above. The curves intersect when $\theta=\frac{2 \pi}{3}$ and $\theta=\frac{4 \pi}{3}$.
(a) Let R be the region that is inside the graph of $r=2$ and also inside the graph of $r=3+2 \cos \theta$, as shaded in the figure above. Find the area of R.
(b) A particle moving with nonzero velocity along the polar curve given by $r=3+2 \cos \theta$ has position $(x(t), y(t))$ at time t, with $\theta=0$ when $t=0$. This particle moves along the curve so that $\frac{d r}{d t}=\frac{d r}{d \theta}$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
(c) For the particle described in part (b), $\frac{d y}{d t}=\frac{d y}{d \theta}$. Find the value of $\frac{d y}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.

2003 BC Exam (Form B) - \#2 - No Calculator

The figure above shows the graphs of the circles $x^{2}+y^{2}=2$ and $(x-1)^{2}+y^{2}=1$. The graphs intersect at the points $(1,1)$ and $(1,-1)$. Let R be the shaded region in the first quadrant bounded by the two circles and the x-axis.
(a) Set up an expression involving one or more integrals with respect to x that represents the area of R.
(b) Set up an expression involving one or more integrals with respect to y that represents the area of R.
(c) The polar equations of the circles are $r=\sqrt{2}$ and $r=2 \cos \theta$, respectively. Set up an expression involving one or more integrals with respect to the polar angle θ that represents the area of R.

The figure above shows the graphs of the line $x=\frac{5}{3} y$ and the curve C given by $x=\sqrt{1+y^{2}}$. Let S be the shaded region bounded by the two graphs and the x-axis. The line and the curve intersect at point P.
(a) Find the coordinates of point P and the value of $\frac{d x}{d y}$ for curve C at point P.
(b) Set up and evaluate an integral expression with respect to y that gives the area of S.
(c) Curve C is a part of the curve $x^{2}-y^{2}=1$. Show that $x^{2}-y^{2}=1$ can be written as the polar equation $r^{2}=\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}$.
(d) Use the polar equation given in part (c) to set up an integral expression with respect to the polar angle θ that represents the area of S.
\qquad

1. Which of the following integrals represents the area enclosed by the smaller loop of the graph of $r=1+2 \sin \theta$?
(A) $\frac{1}{2} \int_{7 \pi / 6}^{11 \pi / 6}(1+2 \sin \theta)^{2} d \theta$
(B) $\frac{1}{2} \int_{7 \pi / 6}^{11 \pi / 6}(1+2 \sin \theta) d \theta$
(C) $\frac{1}{2} \int_{-\pi / 6}^{7 \pi / 6}(1+2 \sin \theta)^{2} d \theta$
(D) $\int_{-\pi / 6}^{7 \pi / 6}(1+2 \sin \theta)^{2} d \theta$
(E) $\int_{7 \pi / 6}^{-\pi / 6}(1+2 \sin \theta) d \theta$

2. What is the area of the region enclosed by the lemniscate $r^{2}=18 \cos (2 \theta)$ shown in the figure above?
(A) $\frac{9}{2}$
(B) 9
(C) 18
(D) 24
(E) 36
3. The area of one loop of the graph of the polar equation $r=2 \sin (3 \theta)$ is given by which of the following expressions?
(A) $4 \int_{0}^{\pi / 3} \sin ^{2}(3 \theta) d \theta$
(B) $2 \int_{0}^{\pi / 3} \sin (3 \theta) d \theta$
(C) $2 \int_{0}^{\pi / 3} \sin ^{2}(3 \theta) d \theta$
(D) $2 \int_{0}^{2 \pi / 3} \sin ^{2}(3 \theta) d \theta$
(E) $2 \int_{0}^{2 \pi / 3} \sin (3 \theta) d \theta$

4. Which of the following gives the area of the region enclosed by the loop of the graph of the polar curve $r=4 \cos (3 \theta)$ shown in the figure above?
(A) $16 \int_{-\pi / 3}^{\pi / 3} \cos (3 \theta) d \theta$
(B) $8 \int_{-\pi / 6}^{\pi / 6} \cos (3 \theta) d \theta$
(C) $8 \int_{-\pi / 3}^{\pi / 3} \cos ^{2}(3 \theta) d \theta$
(D) $16 \int_{-\pi / 6}^{\pi / 6} \cos ^{2}(3 \theta) d \theta$
(E) $8 \int_{-\pi / 6}^{\pi / 6} \cos ^{2}(3 \theta) d \theta$
5. The area of the region enclosed by the polar curve $r=\sin (2 \theta)$ for $0 \leq \theta \leq \frac{\pi}{2}$ is
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) $\frac{\pi}{8}$
(E) $\frac{\pi}{4}$
