Day 5 Notes: Polar Graphs \& Tangents

Derivatives of Polar Equations

A polar equation must first be converted into parametric form before the $\mathrm{dy} / \mathrm{dx}$ can be found.

Remember the conversions $x=r \cos \theta$ and $y=r \sin \theta$?
We can use these to find $d y / d x$.

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

Note: This is the same as a parametric derivative!

Example \#1: Find dy/dx for $\mathbf{r}=3-2 \cos \theta$ when $\theta=0$.

Example \#2: Find the points (r, θ) of horizontal and vertical tangency for the polar curve $r=4 \cos \theta$.

Tangents at the pole

1. At the pole, $r=0$. Find the values of θ where $r=0$.
2. The radial lines $\theta=\alpha$ will be the tangents at the pole.

* It's possible to have more than one tangent at the pole.

Example \#3: Find the tangents at the pole: $\mathbf{r}=3+3 \cos \theta$.

Example \#4: Find the tangents at the pole for the curve $r=2 \cos (3 \theta)$.

AP Calculus BC

Name: \qquad
Unit 11 - Day 5 - Assignment

1) Find $d y / d x$ for $r=2+3 \sin \theta$.
2) Find $d y / d x$ for $r=3(1-\cos \theta)$ at $\theta=\pi / 2$.
3) Find $d y / d x$ for $r=3 \sin \theta$ at $\theta=\pi / 3$.
4) Find the points of horizontal and vertical tangency to the polar curve $r=1-\sin \theta$.
5) Find the points of horizontal tangency to the polar curve $r=2 \csc \theta+3$.
6) Sketch the graph of the polar equation and find the tangents at the pole for the polar curve $\mathbf{r}=\mathbf{2}(1-\sin \theta)$.
7) Sketch the graph of the polar equation and find the tangents at the pole for the polar curve $r=2 \cos 3 \theta$.
8) Sketch the graph of the polar equation and find the tangents at the pole for the polar curve $r=3 \sin 2 \theta$.
