Day 5 Notes: Polar Graphs & Tangents

Derivatives of Polar Equations

A polar equation must first be converted into parametric form before the dy/dx can be found. Remember the conversions $x = r \cos \theta$ and $y = r \sin \theta$? We can use these to find dy/dx.

Note: This is the same as a parametric derivative!

Example #1: Find dy/dx for $r = 3 - 2\cos\theta$ when $\theta = 0$.

Example #2: Find the points (r, θ) of horizontal and vertical tangency for the polar curve $r = 4\cos\theta$.

Tangents at the pole

1. At the pole, r = 0. Find the values of θ where r = 0.

2. The radial lines $\theta = \alpha$ will be the tangents at the pole.

* It's possible to have more than one tangent at the pole.

Example #3: Find the tangents at the pole: $r = 3 + 3\cos\theta$.

Example #4: Find the tangents at the pole for the curve $r = 2\cos(3\theta)$.

AP Calculus BC Unit 11 – Day 5 – Assignment Name: _____

1) Find dy/dx for $r = 2 + 3\sin\theta$.

2) Find dy/dx for $r = 3(1 - \cos\theta)$ at $\theta = \pi/2$.

3) Find dy/dx for $r = 3\sin\theta$ at $\theta = \pi/3$.

4) Find the points of horizontal and vertical tangency to the polar curve $r = 1 - \sin\theta$.

5) Find the points of horizontal tangency to the polar curve $r = 2\csc\theta + 3$.

6) Sketch the graph of the polar equation and find the tangents at the pole for the polar curve $r = 2(1 - \sin\theta)$.

7) Sketch the graph of the polar equation and find the tangents at the pole for the polar curve $r = 2\cos 3\theta$.

8) Sketch the graph of the polar equation and find the tangents at the pole for the polar curve $r = 3\sin 2\theta$.