

Polar coordinates for a point P are in the form P(r, θ), where r is the distance from the origin (pole) to P and θ is the angle from the polar axis to OP. θ is positive when measured in the counterclockwise direction and negative in the clockwise direction.

With rectangular coordinates, each point (x, y) is a unique point. Not so with polar coordinates.

**The pole can be written as (0, $\theta),$ where θ is any angle.

CONVERT COORDINATES:

Polar to rectangular: $(r, \theta) \rightarrow (x, y)$

Use $x = r \cos\theta$ and $y = r \sin\theta$.

Convert (-2, $5\pi/6$) into rectangular coordinates.

Rectangular to Polar: $(x, y) \rightarrow (r, \theta)$

Use $r^2 = x^2 + y^2$ and $\tan \theta = y/x$.

Find two sets of polar coordinates for (3, -1).

CONVERTING EQUATIONS

Polar to rectangular:

1) r = -2

 $x = r \cos\theta$ $y = r \sin\theta$ $r^2 = x^2 + y^2$ $\tan\theta = y/x$

2) $r = 3 \cos\theta$

3) $\theta = 5\pi/6$

Rectangular to polar:

1) $x^2 + y^2 = 2x$

 $x = r \cos\theta$ $y = r \sin\theta$ $r^2 = x^2 + y^2$ $\tan\theta = y/x$

2) x = 10

3) xy = 4

Limacons take the form r = a \pm b·cos θ or r = a \pm b·sin θ

If a < b, the limaçon has a loop.

--

r = 2 - 3cos θ

 $r = 2 + 3\cos\theta$

If a = b, the limacon is called a cardioid.

 $r = 3 + 3\cos\theta$

If a > b, then we have a dimpled limacon.

Rose curves take the form $r = a \cos(n\theta)$ or $r = a \sin(n\theta)$.

If n is odd, the curve will have n petals. If n is even, the curve will have 2n petals. The length of each petal is a. Curves in the form $r = a \cos(n\theta)$ will have a petal along the polar axis.

The diameter of thecircle will be |a|.

 $r = 4 \cos \theta$

<u>Circles</u> can also have polar form $r = a \cos \theta$ or $r = a \sin \theta$.

