Day 2 Notes: Parametric Equations \& Calculus

DERIVATIVES OF PARAMETRIC

 EQUATIONSIf $x=f(t)$ and $y=g(t)$ represent curve C , then the slope of C at point (x, y) is given by

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}, \text { where } \frac{d x}{d t} \neq 0 .
$$

HIGHER ORDER DERIVATIVES

$1^{\text {ST }}$ derivative: $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$
$2^{\text {nd }}$ derivative: $\quad \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}[d y / d x]}{d x / d t}$

HORIZONTAL \& VERTICAL TANGENTS

- Horizontal: Since $\frac{d y}{d x}=0$ implies a

Example: Find all points of horizontal and vertical tangency to the curve given by $x=\cos \theta, y=2 \sin \theta$ horizontal tangent, and $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$, horizontal tangents will occur when $\frac{d y}{d t}=0$.

- Vertical: Vertical tangents occur where $\frac{d y}{d x}$ is undefined. This happens when $\frac{d x}{d t}=0$.
- Neither: If $\frac{d y}{d t}$ and $\frac{d x}{d t}$ are simultaneously equal to 0 for the same value of t, we will usually have a sharp turn or a cusp, NOT a horizontal or vertical tangent.

Example: Find $\frac{d^{2} y}{d x^{2}}$ if $x=\theta-\sin \theta$ and $y=1-\cos \theta$.

Another example: The prolate cycloid given by $x=2 t-\pi \sin t$ and $y=2-\pi \cos t$ crosses over itself at the point (0,2). (Graph to confirm! Set T-min and T-max so that $-2 \pi \leq t \leq 2 \pi$) Find the equations of both tangent lines at this point.

ARC LENGTH OF PARAMETRICALLY DEFINED CURVES

$$
s=\int_{t_{1}}^{t_{2}} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

*Arc length gives the total distance traveled.

FINDING THE POSITION OF A PARTICLE
**Position of the particle uses the Fundamental Theorem of Calculus!

$$
\begin{gathered}
x\left(t_{2}\right)-x\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} x^{\prime}(t) d t \\
\text { or } \\
y\left(t_{2}\right)-y\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} y^{\prime}(t) d t
\end{gathered}
$$

Example: Find the total distance a particle travels along a path given by $x=t^{2}+1$ and $y=4 t^{3}+3$ on the interval $-1 \leq t \leq 0$.

Example: The position of a particle in the $x y$-plane is given by $(x(t), y(t))$, with $\frac{d x}{d t}=t^{2}+\sin \left(3 t^{2}\right)$. At $t=0$, the particle at the point $(5,1)$. Find the x-coordinate of the particle at $t=3$.

SPEED OF A PARTICLE $\text { Speed }=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}$	Example: A particle follows a path defined parametrically by $x(t)=2 \sqrt{t-3}, y(t)=3 t^{2}$. What is the speed of the particle at $\mathrm{t}=7$?
AREA OF PARAMETRICALLY DEFINED REGIONS $A=\int_{a}^{b} y d x$ ***Note: Since we are integrating with respect to x, the limits \boldsymbol{a} and \boldsymbol{b} are x-values. Use these to find the corresponding values of $\boldsymbol{\theta}$ or \boldsymbol{t}.	Example: Find the area of the region enclosed by the graph of $x=\sin \theta, y=\sin ^{2} \theta$, the x-axis and the vertical line $x=1$.
VOLUME OF PARAMETRICALLY DEFINED REGIONS $V=\pi \int_{a}^{b} y^{2} d x$	Example: Suppose the region described in the previous example is rotated about the x -axis. Find the volume of the resulting solid.

\qquad
Unit 11 - Day 2 - Assignment
\#'s 1 - 2: Find $d y / d x$ and $d^{2} y / d x^{2}$. Then find the slope and concavity (if possible) at the Indicated value of the parameter.

| 1) $x=2 t, \quad y=3 t-1, \quad t=3 \quad x=2 \cos \theta, \quad y=2 \sin \theta, \quad t=\pi / 4$ |
| :---: | :---: | :---: |

\#'s 3 \& 4: Find all points (if any) of horizontal and vertical tangency to the curve.

3) $x=1-t, y=t^{3}-3 t$	4) $x=3 \cos \theta, y=3 \sin \theta$

5) Find an equation of the tangent line at the point $(0,2)$ for $x=2 \cot \theta$ and $y=2 \sin ^{2} \theta$.
6) Find the total distance a particle travels along a path by $x=t^{2}$ and $y=2 t$ on the interval $0 \leq t \leq 2$. (Calculator Active)
7) A particle follows a path defind parametrically by $x(t)=4 t^{2}-3$ and $y(t)=2 t^{3}$. What is the speed of the particle at $t=3$? (Calculator Active)
8) Find the area of the region enclosed by the graph of $x=2 \sin ^{2} \theta, y=2 \sin ^{2} \theta \tan \theta$, the x -axis and the vertical line $x=2$. (Calculator Active)
