AP Calculus BC Unit 11 – Parametric Equations & Polar Coordinates

Day 2 Notes: Parametry	ic Equations & Calculus
DERIVATIVES OF PARAMETRIC	Example: Find the equation of the tangent to the
EQUATIONS	curve defined by $x = \sqrt{t}$ and $y = \sqrt{t-1}$ when $t = 2$.
If $x = f(t)$ and $y = g(t)$ represent curve C,	
then the slope of C at point (x, y) is given by	
$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \text{ where } \frac{dx}{dt} \neq 0.$	
HIGHER ORDER DERIVATIVES	Example: Find $\frac{d^2 y}{dx^2}$ if $x = \theta - \sin \theta$ and $y = 1 - \cos \theta$.
du /	Example: The dx^2 if $x = 0$ sind and dx^2
1 ST derivative: $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	$y = 1 - \cos \theta .$
2 nd derivative: $\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left[\frac{dy}{dx} \right]}{\frac{dx}{dt}}$	
HORIZONTAL & VERTICAL TANGENTS Horizontal: Since $\frac{dy}{dy} = 0$ implies a	Example: Find all points of horizontal and vertical tangency to the curve given by $x = \cos\theta$, $y = 2\sin\theta$
• Horizontal: Since $\frac{dy}{dx} = 0$ implies a horizontal tangent, and $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$, horizontal	
tangents will occur when $\frac{dy}{dt} = 0$.	
• Vertical: Vertical tangents occur where $\frac{dy}{dx}$	
is undefined. This happens when $\frac{dx}{dt} = 0$.	
• Neither: If $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are simultaneously	
equal to 0 for the same value of <i>t</i> , we will	
usually have a sharp turn or a cusp, NOT a	
horizontal or vertical tangent.	

Another example: The prolate cycloid given by $x = 2$ point (0, 2). (Graph to confirm! Set T-min and T-max tangent lines at this point.	$2t - \pi \sin t$ and $y = 2 - \pi \cos t$ crosses over itself at the so that $-2\pi \le t \le 2\pi$) Find the equations of both
ARC LENGTH OF PARAMETRICALLY DEFINED CURVES $s = \int_{t_1}^{t_2} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$ *Arc length gives the total distance traveled.	Example: Find the total distance a particle travels along a path given by $x = t^2 + 1$ and $y = 4t^3 + 3$ on the interval $-1 \le t \le 0$.
FINDING THE POSITION OF A PARTICLE **Position of the particle uses the Fundamental Theorem of Calculus! $x(t_2) - x(t_1) = \int_{t_1}^{t_2} x'(t) dt$ or $y(t_2) - y(t_1) = \int_{t_1}^{t_2} y'(t) dt$	Example: The position of a particle in the <i>xy</i> -plane is given by $(x(t), y(t))$, with $\frac{dx}{dt} = t^2 + \sin(3t^2)$. At t = 0, the particle at the point (5, 1). Find the <i>x</i> -coordinate of the particle at $t = 3$.

SPEED OF A PARTICLE	Example: A particle follows a path defined
	parametrically by $x(t) = 2\sqrt{t-3}$, $y(t) = 3t^2$. What is
Speed = $\sqrt{[x'(t)]^2 + [y'(t)]^2}$	the speed of the particle at $t = 7$?
AREA OF PARAMETRICALLY DEFINED	Example: Find the area of the region enclosed by
REGIONS	the graph of $x = \sin \theta$, $y = \sin^2 \theta$, the x-axis and the
$A = \int^{b} y dx$	vertical line $x = 1$.
$A = \int y dx$	
a	
***Note: Since we are integrating with respect to <i>x</i> ,	
the limits <i>a</i> and <i>b</i> are <i>x</i> -values. Use these to find the	
corresponding values of θ or t .	
VOLUME OF PARAMETRICALLY DEFINED	Example: Suppose the region described in the
REGIONS	previous example is rotated about the x-axis. Find
	the volume of the resulting solid.
$\mathbf{V} = \begin{bmatrix} b \\ 2 \end{bmatrix} \mathbf{V}$	
$V = \pi \int y^2 dx$	
a	

Name: _____

#'s 1-2: Find dy/dx and d²y/dx². Then find the slope and concavity (if possible) at the Indicated value of the parameter.

1)	x = 2t.	y=3t-1,	<i>t</i> = 3	2)	$x = 2cos\theta$.	y=2sin heta,	$t = \pi/4$
		y,				<i>y</i> _20000,	

#'s 3 & 4: Find all points (if any) of horizontal and vertical tangency to the curve.

3) $x = 1 - t, y = t^3 - 3t$	4) $x = 3\cos\theta, y = 3\sin\theta$

5) Find an equation of the tangent line at the point (0, 2) for $x = 2\cot\theta$ and $y = 2\sin^2\theta$.

6) Find the total distance a particle travels along a path by $x = t^2$ and y = 2t on the interval $0 \le t \le 2$. (Calculator Active)

7) A particle follows a path defind parametrically by $x(t) = 4t^2 - 3$ and $y(t) = 2t^3$. What is the speed of the particle at t = 3? (Calculator Active)

8) Find the area of the region enclosed by the graph of $x = 2sin^2\theta$, $y = 2sin^2\theta tan\theta$, the x-axis and the vertical line x = 2. (Calculator Active)