AP Calculus BC

Unit 11 - Parametric Equations \& Polar Coordinates

Day 1 Notes: Parametric Equations

**Parametric Equations introduce a "parameter", frequently t (time) or θ (angle).
** We can tell where an object will be and at what time it will be there.
**Parametric equations give position, speed, and direction.

Example 1: Use the table below to help you graph the parametric equations $x(t)=t^{2}+t$ and $y(t)=t^{2}-t$.

t	-3	-2	-1	0	1	2	3
x							
y							

Note that when (x, y) is plotted according to asending values of t, the curve is traced out in a specific direction called the orientation.

Example 2: Graphing Parametric Equations in your calculator.
*Set your calculator to parametric mode.
a) Graph $\mathrm{x}=\mathrm{t}^{2}-4$, $\mathrm{y}=\mathrm{t} / 2$, for $-2 \leq \mathrm{t} \leq 3$
b) Graph $\mathrm{x}=4 \mathrm{t}^{2}-4, \mathrm{y}=\mathrm{t}$, for $-1 \leq \mathrm{t} \leq 3 / 2$

There are times when we might want to convert parametric equations to rectangular, and vice versa.

1) Solve one of the equations for t.
2) Substitute t into the other equation.
3) Adjust the domain of the rectangular equation to fit that of the parametric equations.

Example 3: Convert $\mathrm{x}=\mathrm{t}-1$ and $\mathrm{y}=\mathrm{t} /(\mathrm{t}-1)$ to rectangular form.

Example 4: Convert $x=3 t-1$ and $y=2 t-1$ to rectangular form.
**Remember: $\cos ^{2} \theta+\sin ^{2} \theta=1$ and $\sec ^{2} \theta-\tan ^{2} \theta=1$
Example 5: Convert to rectangular form: $x=5 \cos \theta, y=5 \sin \theta$

Example 6: Convert to rectangular form: $x=4 \sin (2 \theta), y=2 \cos (2 \theta)$

Example 7: Convert to parametric form:

$$
\frac{(x-4)^{2}}{25}+\frac{(y+1)^{2}}{9}=1
$$

Example 8: Convert to parametric form: $\frac{y^{2}}{14}-\frac{x^{2}}{9}=1$

Definition of SMOOTH CURVE

If C is a curve represented by $x=f(t), y=g(t)$ on an interval [a, b], and f' and g' are continuous on $[\mathrm{a}, \mathrm{b}]$ and not simultaneously equal to 0 (except maybe at the endpoints of [a, b]), then C is a smooth curve.
*A curve is not smooth wherever it has cusps or sharp turns.

Cycloids are formed if we look at the motion of a point on a circle with radius a as it rolls along a line.

$$
\text { Cycloids have sharp turns at } x=2 n \pi a .
$$

Example 9: Sketch the cycloid $x=4(\theta-\sin \theta), y=4(1-\cos \theta)$.
Identify any points at which the curve is not smooth.
\qquad
Unit 11 - Day 1 - Assignment
\#'s 1-3: Sketch the curve (by hand) represented by the parametric equations and write the corresponding rectangular equation by eliminating the parameter.

\#'s 4 - 6: Use your graphing calculator to sketch the curve represented by the parametric equations. Eliminate the parameter and write the corresponding rectangular equation.

4)	5)
$y=4+2 \cos \theta$	
$y=-1+\sin \theta$	

6) $x=e^{-t}, y=e^{3 t}$
\#'s 7 - 8: Find a set of parametric equations for the conic.

7)	$8)$
Ellipse: Vertices $(\pm 5,0)$, Foci $(\pm 4,0)$	Hyperbola: Vertices $(\pm 4,0)$, Foci $(\pm 5,0)$

9) Graph the cycloid $x=2(\theta-\sin \theta), y=2(1-\cos \theta)$. Identify any points at which the curve is not smooth.
