AP Calculus BC Unit 11 – Parametric Equations & Polar Coordinates

Day 1 Notes: Parametric Equations

**Parametric Equations introduce a "parameter", frequently *t* (time) or θ (angle).

** We can tell where an object will be and at what time it will be there.

**Parametric equations give position, speed, and direction.

Example 1: Use the table below to help you graph the parametric equations

t	1-3	-2	-1	0	1	2	3
x							
у							

Note that when (x, y) is plotted according to asending values of *t*, the curve is traced out in a specific direction called the <u>orientation</u>.

Example 2: Graphing Parametric Equations in your calculator. *Set your calculator to parametric mode.

- a) Graph $x = t^2 4$, y = t/2, for $-2 \le t \le 3$
- b) Graph $x = 4t^2 4$, y = t, for $-1 \le t \le 3/2$

There are times when we might want to convert parametric equations to rectangular, and vice versa.

- 1) Solve one of the equations for t.
- 2) Substitute t into the other equation.
- **3**) Adjust the domain of the rectangular equation to fit that of the parametric equations.

Example 3: Convert x = t - 1 and y = t / (t - 1) to rectangular form.

Example 4: Convert x = 3t - 1 and y = 2t - 1 to rectangular form.

**Remember: $cos^2\theta + sin^2\theta = 1$ and $sec^2\theta - tan^2\theta = 1$

Example 5: Convert to rectangular form: $x = 5\cos\theta$, $y = 5\sin\theta$

Example 6: Convert to rectangular form: $x = 4\sin(2\theta), y = 2\cos(2\theta)$

Example 7: Convert to parametric form:

$$\frac{(x-4)^2}{25} + \frac{(y+1)^2}{9} = 1$$

Example 8: Convert to parametric form: $\frac{y^2}{14} - \frac{x^2}{9} = 1$

Definition of SMOOTH CURVE

If C is a curve represented by x = f(t), y = g(t)on an interval [a, b], and f' and g' are continuous on [a, b] and not simultaneously equal to 0 (except maybe at the endpoints of [a, b]), then C is a smooth curve.

*A curve is not smooth wherever it has cusps or sharp turns.

Example 9: Sketch the cycloid $x = 4(\theta - \sin\theta)$, $y = 4(1 - \cos\theta)$. Identify any points at which the curve is not smooth.

AP Calculus BC Unit 11 – Day 1 – Assignment Name: _____

#'s 1-3: Sketch the curve (by hand) represented by the parametric equations and write the corresponding rectangular equation by eliminating the parameter.

1)	-	2)	
	$x = \sqrt{t}, y = t - 2$	$x = sec\theta$,	$y = cos\theta$
3)			
	$x = 3cos\theta, \qquad y = 3sin\theta$		
1			

#'s 4 – 6: Use your graphing calculator to sketch the curve represented by the parametric equations. Eliminate the parameter and write the corresponding rectangular equation.

)

6) $x = e^{-t}, y = e^{3t}$					
#'s 7 – 8: Find a set of parametric equation	ons for the conic.				
7) Ellipse: Vertices $(\pm 5, 0)$, Foci $(\pm 4, 0)$	8) Hyperbola: Vertices $(\pm 4, 0)$, Foci $(\pm 5, 0)$				

9) Graph the cycloid $x = 2(\theta - \sin\theta)$, $y = 2(1 - \cos\theta)$. Identify any points at which the curve is not smooth.