Find the Maclaurin series for

$$
f(x)=\sin 2 x
$$

$$
7+\frac{(x-2)^{2}}{3^{2} \cdot 2!}+\frac{3!(x-2)^{4}}{3^{4} \cdot 4!}
$$

Find the Taylor series for $f(x)=e^{-2 x}$ about $x=0$.

$$
2 x-\frac{8 x^{3}}{3!}+\frac{32 x^{5}}{5!}-\ldots
$$

Given $\mathrm{f}(\mathrm{x})=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ find a power series for $f^{\prime}(x)$.

$$
1-2 x+\frac{4 x^{2}}{2!}-\frac{8 x^{3}}{3!}+\frac{16 x^{4}}{4!}-\ldots
$$

Write a power series, centered
at 1, for the function $f(x)=\frac{3}{3-x}$ and then find the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n-1}}{(2 n-1)!}
$$

For what values of x does the series $\sum_{n=0}^{\infty} \frac{2^{n}(x-4)^{n}}{n}$ converge?

$$
(-1,3)
$$

Find the radius of convergence for the power series $\sum_{n=0}^{\infty}\left(\frac{2 x}{3}\right)^{n}$

$$
\frac{7}{2} \leq x<\frac{9}{2}
$$

Find the third-degree Taylor polynomial centered at 0 for the function $f(x)=e^{2 x}+3 x$.
$\frac{3}{2}$

$$
\text { If } f(x)=e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\ldots
$$

Write the first four nonzero terms of the
Taylor series for $\int_{0}^{x} e^{-t^{2}} d t$ about $\mathrm{x}=0$.

$$
1+5 x+2 x^{2}+\frac{4}{3} x^{3}
$$

Use the $4^{\text {th }}$ degree Taylor Series for cosx about $x=0$ to determine whether f has a relative minimum, relative maximum, or neither at $x=0$.

$$
x-\frac{1}{3} x^{3}+\frac{1}{10} x^{5}-\frac{1}{42} x^{7}
$$

Let f be a function with derivatives of all orders and for which $f(2)=7$. When n is odd, the nth derivative of f at $x=2$ is 0 . When n is even, and $n \geq 2$, the nth derivative of

$$
\begin{gathered}
\text { f at } x=2 \text { is given by } f^{(n)}(2)=\frac{(n-1)!}{3^{n}} \text {. Write a fourth } \\
\text { degree Taylor polynomial for } f \text { about } x=2
\end{gathered}
$$

relative maximum

