п

TAYLOR POLYNOMIALS: Use an nth degree Taylor polynomial to approximate f(x) near x=c.

$$P_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \frac{f'''(c)}{3!}(x-c)^3 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)$$

*A Maclaurin polynomial is centered at $x = 0$.

Remember: Don't go beyond the degree asked for on the test!

TAYLOR'S THEOREM:

$$f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \frac{f'''(c)}{3!}(x-c)^3 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n + R_n(x), \text{ where}$$

$$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}. \leftarrow \text{(Lagrange error bound) You don't need to find } z. \text{ Just look for the}$$

max value of $f^{(n+1)}(z)$ on the interval between x and c.

TAYLOR & MACLAURIN SERIES:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!} (x-c)^2 + \frac{f'''(c)}{3!} (x-c)^3 + \dots + \frac{f^{(n)}(c)}{n!} (x-c)^n + \dots$$

Taylor series converge to a function f(x) if $R_n(x) \to 0$ as $n \to \infty$.

SAVE TIME ON THE EXAM BY MEMORIZING THESE COMMON TAYLOR SERIES!

$$\ln x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots + \frac{(-1)^{n-1}(x-1)^n}{n} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^n}{n}$$
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

CONVERGENCE: Use ratio test to determine convergence of Taylor series.

If a_n is the general term of a Taylor series,

1

1.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \implies \text{the series converges}$$

2.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \ge 1 \implies \text{the series diverges}$$

INTEGRALS & DERIVATIVES OF TAYLOR SERIES can be calculated term by term from

a known Taylor series. Integrals and derivatives have

- the same radius of convergence
- the same interval of convergence, except maybe at the endpoints of the interval. (You must test the endpoints in the series to determine convergence there.)

#'s 1 – 11: Multiple Choice & #'s 12 – 13: Free Response * means no calculator!

*1. The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$. Which is a power series expansion for $\frac{x^2}{1-x^2}$? A. $1+x^2+x^4+x^6+x^8+...$ B. $x^2+x^3+x^4+x^5+...$ C. $x^2+2x^3+3x^4+4x^5+...$ E. $x^2-x^4+x^6-x^8+...$

*2. A function f has Maclaurin series given by $\frac{x^4}{2!} + \frac{x^5}{3!} + \frac{x^6}{4!} + \dots + \frac{x^{n+3}}{(n+1)!} + \dots$ Which of the

following is an expression for f(x)?

A. $-3x\sin x + 3x^2$ B. $-\cos(x^2) + 1$ C. $-x^2\cos x + x^2$ D. $x^2e^x - x^3 - x^2$ E. $e^{x^2} - x^2 - 1$

*3. What is the coefficient of x^2 in the Taylor series for $\frac{1}{(1+x)^2}$ about x = 0?

- A. $\frac{1}{6}$ B. $\frac{1}{3}$ C. 1 D. 3 E. 6
- *4. What is the approximation of the value of sin 1 obtained by using the fifth-degree Taylor Polynomial about x = 0 for sin x?
 - A. $1 \frac{1}{2} + \frac{1}{24}$ B. $1 \frac{1}{2} + \frac{1}{4}$ C. $1 \frac{1}{3} + \frac{1}{5}$ D. $1 \frac{1}{4} + \frac{1}{8}$ E. $1 \frac{1}{6} + \frac{1}{120}$
- *5. If $\sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then $f'(1) = \sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then $f'(1) = \sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then $f'(1) = \sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then $f'(1) = \sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then $f'(1) = \sum_{n=0}^{\infty} a_n x^n$.

A. 0 B.
$$a_1$$
 C. $\sum_{n=0}^{\infty} a_n$ D. $\sum_{n=1}^{\infty} na_n$ E. $\sum_{n=1}^{\infty} na_n^{n-1}$

- 6. Let $P(x) = 3x^2 5x^3 + 7x^4 + 3x^5$ be the fifth-degree Taylor polynomial for the function f about x = 0. What is the value of f'''(0)?
 - A. -30 B. -15 C. -5 D. $-\frac{5}{6}$ E. $-\frac{1}{6}$

*7. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(x + \frac{3}{2}\right)^n$ converges?

A.
$$-\frac{5}{2} < x < -\frac{1}{2}$$

B. $-\frac{5}{2} < x \le -\frac{1}{2}$
C. $-\frac{5}{2} \le x < -\frac{1}{2}$
D. $-\frac{1}{2} < x < -\frac{1}{2}$
E. $x \le -\frac{1}{2}$

*8. Which of the following is the Maclaurin series for e^{3x} ?

A.
$$1+x+\frac{x^2}{2}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots$$

B. $3+9x+\frac{27x^2}{2}+\frac{81x^3}{3!}+\frac{243x^4}{4!}+\cdots$
C. $1-3x+\frac{9x^2}{2}-\frac{27x^3}{3!}+\frac{81x^4}{4!}+\cdots$
B. $3+9x+\frac{27x^2}{2}+\frac{81x^3}{3!}+\frac{243x^4}{4!}+\cdots$
D. $1+3x+\frac{3x^2}{2}+\frac{3x^3}{3!}+\frac{3x^4}{4!}+\cdots$

*9. What is the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n \cdot 2^n}$ A. 1 < x < 5 B. $1 \le x < 5$ C. $1 \le x \le 5$ D. 2 < x < 4 E. $2 \le x \le 4$

*10. The third-degree Taylor polynomial for a function f about x = 4 is $\frac{(x-4)^3}{512} - \frac{(x-4)^2}{64} + \frac{(x-4)}{4} + 2$. What is the value of f'''(4)?

A. $-\frac{1}{64}$ B. $-\frac{1}{32}$ C. $\frac{1}{512}$ D. $\frac{3}{256}$ E. $\frac{81}{256}$

*11. Which of the following is the Maclaurin series for $\frac{1}{(1-x)^2}$? A. $1-x+x^2-x^3+\cdots$ B. $1-2x+3x^2-4x^3+\cdots$ C. $1+2x+3x^2+4x^3+\cdots$ D. $1+x^2+x^4+x^6+\cdots$ E. $x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots$

*12. Let f be the function given by $f(x) = \sin\left(5x + \frac{\pi}{4}\right)$, and let P(x) be the third-degree Taylor

polynomial for f about x = 0.

- a. Find P(x).
- b. Find the coefficient of x^{22} in the Taylor series for f about x = 0.
- c. Use the Lagrange error bound to show that $\left| f\left(\frac{1}{10}\right) P\left(\frac{1}{10}\right) \right| < \frac{1}{100}$.
- d. Let *G* be the function given by $G(x) = \int_{0}^{x} f(t)dt$. Write the third-degree Taylor polynomial for *G* about x = 0.
- *13. The function f is defined by the power series

 $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots + \frac{(-1)^n x^{2n}}{(2n+1)!} + \dots \text{ for all real numbers } x.$

- a. Find f'(0) and f''(0). Determine whether f has a local maximum, a local minimum, or neither at x = 0.
- b. Show that $1 \frac{1}{3!}$ approximates f(1) with error less than $\frac{1}{100}$.
- c. Show that y = f(x) is a solution to the differential equation $xy' + y = \cos x$