TAYLOR POLYNOMIALS: Use an nth degree Taylor polynomial to approximate $f(x)$ near $x=c$.

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

*A Maclaurin polynomial is centered at $x=0$.
Remember: Don't go beyond the degree asked for on the test!

TAYLOR'S THEOREM:

$f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x)$, where $R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1} . \leftarrow$ (Lagrange error bound) You don't need to find z. Just look for the max value of $f^{(n+1)}(z)$ on the interval between x and c.

TAYLOR \& MACLAURIN SERIES:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\ldots
$$

Taylor series converge to a function $f(x)$ if $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$.
SAVE TIME ON THE EXAM BY MEMORIZING THESE COMMON TAYLOR SERIES!
$\ln x=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\ldots .+\frac{(-1)^{n-1}(x-1)^{n}}{n}+\ldots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^{n}}{n}$
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots .+\frac{x^{n}}{n!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
CONVERGENCE: Use ratio test to determine convergence of Taylor series.
If a_{n} is the general term of a Taylor series,

1. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1 \Rightarrow$ the series converges
2. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \geq 1 \Rightarrow$ the series diverges

INTEGRALS \& DERIVATIVES OF TAYLOR SERIES can be calculated term by term from a known Taylor series. Integrals and derivatives have

- the same radius of convergence
- the same interval of convergence, except maybe at the endpoints of the interval.
(You must test the endpoints in the series to determine convergence there.)
\qquad

Unit 10 - Review

\#'s 1-11: Multiple Choice \& \#'s 12-13: Free Response * means no calculator!

*1. The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^{n}$. Which is a power series expansion for $\frac{x^{2}}{1-x^{2}}$?
A. $1+x^{2}+x^{4}+x^{6}+x^{8}+\ldots$
B. $x^{2}+x^{3}+x^{4}+x^{5}+\ldots$
C. $x^{2}+2 x^{3}+3 x^{4}+4 x^{5}+\ldots$
D. $x^{2}+x^{4}+x^{6}+x^{8}+\ldots$
E. $x^{2}-x^{4}+x^{6}-x^{8}+\ldots$
*2. A function f has Maclaurin series given by $\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\frac{x^{6}}{4!}+\ldots+\frac{x^{n+3}}{(n+1)!}+\ldots$. Which of the following is an expression for $f(x)$?
A. $-3 x \sin x+3 x^{2}$
B. $-\cos \left(x^{2}\right)+1$
C. $-x^{2} \cos x+x^{2}$
D. $x^{2} e^{x}-x^{3}-x^{2}$
E. $e^{x^{2}}-x^{2}-1$
*3. What is the coefficient of x^{2} in the Taylor series for $\frac{1}{(1+x)^{2}}$ about $x=0$?
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. 1
D. 3
E. 6
*4. What is the approximation of the value of $\sin 1$ obtained by using the fifth-degree Taylor
Polynomial about $x=0$ for $\sin x$?
A. $1-\frac{1}{2}+\frac{1}{24}$
B. $1-\frac{1}{2}+\frac{1}{4}$
C. $1-\frac{1}{3}+\frac{1}{5}$
D. $1-\frac{1}{4}+\frac{1}{8}$
E. $1-\frac{1}{6}+\frac{1}{120}$
*5. If $\sum_{n=0}^{\infty} a_{n} x^{n}$ is a Taylor series that converges to $f(x)$ for all real x, then $f^{\prime}(1)=$
A. 0
B. a_{1}
C. $\sum_{n=0}^{\infty} a_{n}$
D. $\sum_{n=1}^{\infty} n a_{n}$
E. $\sum_{n=1}^{\infty} n a_{n}{ }^{n-1}$
6. Let $P(x)=3 x^{2}-5 x^{3}+7 x^{4}+3 x^{5}$ be the fifth-degree Taylor polynomial for the function f about $x=0$. What is the value of $f^{\prime \prime \prime}(0)$?
A. -30
B. -15
C. -5
D. $-\frac{5}{6}$
E. $-\frac{1}{6}$
*7. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(x+\frac{3}{2}\right)^{n}$ converges?
A. $-\frac{5}{2}<x<-\frac{1}{2}$
B. $-\frac{5}{2}<x \leq-\frac{1}{2}$
C. $-\frac{5}{2} \leq x<-\frac{1}{2}$
D. $-\frac{1}{2}<x<-\frac{1}{2}$
E. $x \leq-\frac{1}{2}$
*8. Which of the following is the Maclaurin series for $e^{3 x}$?
A. $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$
B. $3+9 x+\frac{27 x^{2}}{2}+\frac{81 x^{3}}{3!}+\frac{243 x^{4}}{4!}+\cdots$
C. $1-3 x+\frac{9 x^{2}}{2}-\frac{27 x^{3}}{3!}+\frac{81 x^{4}}{4!}+\cdots$
D. $1+3 x+\frac{3 x^{2}}{2}+\frac{3 x^{3}}{3!}+\frac{3 x^{4}}{4!}+\cdots$
E. $1+3 x+\frac{9 x^{2}}{2}+\frac{27 x^{3}}{3!}+\frac{81 x^{4}}{4!}+\cdots$
*9. What is the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n \cdot 2^{n}}$?
A. $1<x<5$
B. $1 \leq x<5$
C. $1 \leq x \leq 5$
D. $2<x<4$
E. $2 \leq x \leq 4$
*10. The third-degree Taylor polynomial for a function f about $\mathrm{x}=4$ is $\frac{(x-4)^{3}}{512}-\frac{(x-4)^{2}}{64}+\frac{(x-4)}{4}+2$.
What is the value of $f^{\prime \prime \prime}(4)$?
A. $-\frac{1}{64}$
B. $-\frac{1}{32}$
C. $\frac{1}{512}$
D. $\frac{3}{256}$
E. $\frac{81}{256}$
*11. Which of the following is the Maclaurin series for $\frac{1}{(1-x)^{2}}$?
A. $1-x+x^{2}-x^{3}+\cdots$
B. $1-2 x+3 x^{2}-4 x^{3}+\cdots$
C. $1+2 x+3 x^{2}+4 x^{3}+\cdots$
D. $1+x^{2}+x^{4}+x^{6}+\cdots$
E. $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots$
*12. Let f be the function given by $f(x)=\sin \left(5 x+\frac{\pi}{4}\right)$, and let $P(x)$ be the third-degree Taylor polynomial for f about $x=0$.
a. Find $P(x)$.
b. Find the coefficient of x^{22} in the Taylor series for f about $x=0$.
c. Use the Lagrange error bound to show that $\left|f\left(\frac{1}{10}\right)-P\left(\frac{1}{10}\right)\right|<\frac{1}{100}$.
d. Let G be the function given by $G(x)=\int_{0}^{x} f(t) d t$. Write the third-degree Taylor polynomial for G about $x=0$.
*13. The function f is defined by the power series $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\ldots$ for all real numbers x.
a. Find $f^{\prime}(0)$ and $f^{\prime \prime}(0)$. Determine whether f has a local maximum, a local minimum, or neither at $x=0$.
b. Show that $1-\frac{1}{3!}$ approximates $f(1)$ with error less than $\frac{1}{100}$.
c. Show that $y=f(x)$ is a solution to the differential equation $x y^{\prime}+y=\cos x$

