TAYLOR SERIES

TAYLOR POLYNOMIALS: Use an nth degree Taylor polynomial to approximate f(x) near x=c.
£
()(x ) +..+ ()(x c)"

P.(x)=f(c)+ f'(c)(x—c)+%(x—c)2 +
*A Maclaurin polynomial is centered at x = 0.
Remember: Don’t go beyond the degree asked for on the test!

TAYLOR’S THEOREM:

f(x) = f(c)+ f'(C)(x—c)+ (C)(x o) 1

(C)(x c)® +.. +%(x ¢)" + R, (X), where

(n+1)
A (X) = (—1()ZI)(X —c)™. « (Lagrange error bound) You don’t need to find z. Just look for the
n+1)!

max value of f ™% (z)on the interval between x and c.

TAYLOR & MACLAURIN SERIES:
0 (n) "
#(x—c)n =f(c)+ f'(c)(x—c)+%(x—c)2
nl I

i (n)

()(x c)++ ()(x c)" +...

n=0
Taylor series converge to a function f(x) if R (x) >0 as n — .

SAVE TIME ON THE EXAM BY MEMORIZING THESE COMMON TAYLOR SERIES!
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CONVERGENCE: Use ratio test to determine convergence of Taylor series.
If a, is the general term of a Taylor series,

1. lim—%| <1 = the series converges

n—ol q

E: L
2. lim—1 >1 = the series diverges

N—0o0 a

INTEGRALS & DERIVATIVES OF TAYLOR SERIES can be calculated term by term from
a known Taylor series. Integrals and derivatives have
e the same radius of convergence
e the same interval of convergence, except maybe at the endpoints of the interval.
(You must test the endpoints in the series to determine convergence there.)
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Unit 10 - Review

#s1—11: Multiple Choice & #’s 12 — 13: Free Response * means no calculator!

2

. . 1 . & o . . X
*1. The Maclaurin series for - is Zx” . Which is a power series expansion for 57
- n=0 —X
A1+ x® B. X’ +x®+x*+x°+... C. xX*+2x> +3x* +4x° +...
D. x*+x*+x%+x%+... E. x> =x*+x%—x®+...
4 5 6 n+3

*2. Afunction f has Maclaurin series given by X X Xy X +... . Which of the

et
203 4 (n+1)!

following is an expression for f(x)?

A. —3xsinx+3x? B. —cos(x®)+1 C. —x*cosx+ x?
D. x%* —x®—x? E. X —x*-1
*3, What is the coefficient of x* in the Taylor series for 5 %) about x = 0?
+ X
A. l B. 1 C. 1 D. 3 E. 6
6 3

*4. What is the approximation of the value of sin 1 obtained by using the fifth-degree Taylor
Polynomial about x = 0 for sin x?

A. 1—1+i B. 1—l+1 C. 1—l+l
2 24 2 4 3 5
D. 1—1+1 E. 1—l+i
4 8 6 120

*5.0f Zanx" is a Taylor series that converges to f(x) for all real x, then f'(1) =
n=0

A. 0 B. a C. ian D. Yna, E. Y na""

n=0 n=1 n=1

6. Let P(x) =3x*—5x>+7x* +3x° be the fifth-degree Taylor polynomial for the function f
about x = 0. What is the value of f''(0)?

A. -30 B. -15 C. -5 D. —— E. —=

*7. What are all values of x for which the series Z (_1) [x + gj converges?
n=1

n
A. —§<x<—l B. —§<x_—1 C. —§£x<—1
2 2 2 2 2 2
D. —1<x<—1 E. xS—1

N
N
N



*8. Which of the following is the Maclaurin series for e**?

2 3 4 2 3 4
A Lexa X X B. 3+9x+27x +81X +243X +
2 3 4 2 3 4
2 3 4 2 3 4
C. 1—3x+9x _2IX +81X +-- D. 1+3x+3x +3X +3X +
2 3 4 2 3 4
2 3 4
E. 1+3x+9x +27X +81X +
3 41

*9. What is the interval of convergence of the power series Z% ?
1 N

A. 1<x<5 B. 1<x<5 C. 1<x<5 D. 2<x<4 E. 2<x<4

(=af (=4 (4)_,

*10. The third-degree Taylor polynomial for a function f about x = 4 is

512 64 4
What is the value of f'"(4)?
_1 B. _ L c. L D. 2 g 81
64 32 512 256 256
*11. Which of the following is the Maclaurin series for ﬁ?
—X
A 1-x+x"=x3 4. B. 1-2x+3x*—4x> +--. C. 1+2x+3x* +4x% +
x> x> x!
D. 1+ x> +x*+x%+-.- E. X+ —+"—+—+--
2 3 4

*12. Let f be the function given by f(x) = sin(Sx + %) and let P(x) be the third-degree Taylor

polynomial for f about x = 0.
a. Find P(x).
b. Find the coefficient of x* in the Taylor series for f about x = 0.

o)Al i

c. Use the Lagrange error bound to show that —
d. Let G be the function given by G(x) :J' f (t)dt. Write the third-degree Taylor polynomial for G

100
0

about x = 0.

*13. The function f is defined by the power series
n 2n 2 4 6 _1\Nny2n
f( ) Z( 1) _X_+X__X_+__.+&
5 (2n +1)I 3 5 7 2n+1)!
a. Find f'(0)and f'(0). Determine whether f has a local maximum, a local minimum, or
neither at x = 0.

+... for all real numbers x.

b. Show that 1—% approximates f(1) with error less than ﬁ

c. Show that y = f(x) is a solution to the differential equation xy'+y = cos x



