7. 2007 BC Exam - #6 — Form B (No Calculator)

Let f be the function given by f{x) = 6e™/* for all x.

(a) Find the first four nonzero terms and the general term for the Taylor series for £ about x = 0,
X . i~ - ~ agps
(b) Let g be the function given by g{(x) = jn St} dr. Find the first four nonzero terms and the general term for the Taylor

serics for g abowt x = 0. .
{c) The funchion # satisfies h(x) = & f"(ax) for all x, where @ and % arc constants. The ‘Faylor serics for & about x = 0

15 given by

3 3 .
X Y k
X PRI SN

xy=1+x+ 3] -Ti p

Find the values of @ and 4
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8. 2008 BC Exam - #3 (Calculator Active)

s | wn [ | e | e | i
o 30 42 99 8
488 448 584
3 . - - il
3 80 128 : ; 3
753 1383 1483 1125
O U i T | 16

Let & be a function having derivatives of all orders for x > (0. Selected values of 4 and its first four

derivatives are indicated in the table above. The function # and these four derivalives are incredsing on

the interval 1 < x < 3. ‘

(a} Write thc@m—l:degree Tavlor polynomia) for £ about x = 2 and use o to approximate f{1.9). Is this
approximation greater than or less than A(1.9) ? Explain vour reasoning,

(by Wrile the third-degree Taylor polynomial for A about x = 2 and use it to approximate £(1.9).

(c) Use the Lagrange error bound to show that the;lhlrd-dwree Waylor polynomial for 4 aboul x =

approximates /2(1.9) with error less than 3 x 107
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9. 2009 BC Exam - #6 — Form B (No Calculator)

The function £ is defined by the power series _
. . o
f)=Ta(x+D+(x+ D2+t (x4 1)+ = Z(x + 1)
R a={)
for all real numbers x for which the series converges.
(a} Find the interval of convergence of the power series for /. Justify vour answer.
(b) The power series above is the Taylor series for / about x = —1. Find the sum of the series for

{c) Let g be the [unction defined by g(x) = _[_1[ f(1) di. Find the value of g(wé), if it exists, or explain
why g(~%) cannot be determined. «
{(d) Let / be the function defined by A(x) = f (.\'E - 1). Find the first three nonzero terms and the general

term of the Taylor series for s about x = 0, and find the value of h(%).

f‘)| ‘a?m\ k\1' \“\M‘\ “ ~ ‘ _
Abm Y ‘{‘ \Y‘Kg"‘ﬁ‘bur\\\# VA £y Re
‘f’;f‘D ‘w- .
—t %efmmew - wa }
v
-2




> -
W F \ZY f H* Ug’\ \}
,\/

20

e

08
Son?
PO{O re e OF

= R
L N
S
><q3/
~—3

4y

SN



10. 2010 BC Exam - #6 (No Calculator)

cos ‘2 il for x # 0
A=y 2
—”2" for x =_0

The function f, defined above. has derivatives of all orders. Let g be the function defined by
. X : i
g(x)=1+[ fuyar _
(a) Write lhe@;t" thiee nom]'ms and the general term of the Taylor series I'oaboui x =10 Use this

seties to wrile the first three nonzero terms and the general term of the Taylor series for f about x = 0.

{b) Use the Taylor series for /about x = 0 {ound in part (a) to determine whether £ has a relative maximum,
relative minimum, or neither at x = 0. Giveé a reason for your answer.

{c) Write the fi il‘th-degvee"l‘aylur polynopiial for g about x = 0.

{d} The 'I"ayic;r series for gabout ¥ = 0, evaluated at x = 1, isan hltemating series with individual terms that
decrease in absolute value to 0. Use the third-degree Tayior polynomial for g about x = 0 to estimate the

value of g(1).. Explain why this estimate differs from the actual value of g(1) by less than %lf
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