7. 2007 BC Exam - #6 - Form B (No Calculator)

Let f be the function given by $f(x) = 6e^{-x/3}$ for all x.

- (a) Find the first four nonzero terms and the general term for the Taylor series for f about x = 0.
- (b) Let g be the function given by $g(x) = \int_0^x f(t) dt$. Find the first four nonzero terms and the general term for the Taylor series for g about x = 0.
- (c) The function h satisfies h(x) = k f'(ax) for all x, where a and k are constants. The Taylor series for h about x = 0 is given by

$$h(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

Find the values of a and k.

(a)
$$f(x) = 6e^{-x/3}$$

$$e^{x} = \frac{2}{4} \frac{x^{n}}{n!}$$

$$62^{-x/3} = 62^{-x/3} = 62^{$$

$$= \frac{\left|\frac{3!}{2!} \frac{(o(-1)^n \times n)}{3n \cdot n!}\right|}{\left|\frac{3n \cdot n!}{n!}\right|} e^{next \cdot n}$$

$$\frac{n=0:}{3^{\circ}\cdot 0!} = \frac{b(1)}{1} = 6$$

$$n=1$$
; $\frac{(a(-1)'x)'}{3'!!} = \frac{-(bx)}{3} = (-2x)$

$$n=2: \frac{|o(-1)^2 x|^2}{3^2 \cdot 2!} = \frac{|ox|^2}{18} = \frac{x^2}{3}$$

$$\frac{n=3: \ b(-1)^3 \times^3}{3^3 \cdot 3!} = \frac{-b \times^3}{162}$$

(b)
$$\int_{0}^{x} f(x) dt = \int_{0}^{x} \left[b - 2t + \frac{1}{3}t^{2} - \frac{1}{27}t^{3} dt \right]$$

$$\left[bt - t^{2} + \frac{t^{3}}{4} - \frac{t^{4}}{108} \right]_{0}^{x}$$

$$\left[bx - x^{2} + \frac{1}{4}x^{3} - \frac{1}{108}x^{4} \right]$$

$$\int_{n=0}^{\infty} \frac{(6(-1)^{n} \times n^{n})}{3^{n} \cdot n!} = \frac{\int_{n=0}^{\infty} \frac{(6(-1)^{n} \times n^{n})}{3^{n} \cdot n! \cdot (n+1)}}{(n+1)!} \frac{General}{term}$$

(c)
$$h(x) = Kf'(ax) = 1$$

 $f(x) = |ae^{-x/3}(-\frac{1}{3}) = -ae^{-x/3}$
 $h(x) = K(-ae^{-ax/3})$

$$h(x) = K(-\infty)$$

 $h(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^3}{n!} + \dots = ex$

$$-2Ke^{-ax/s} = e^{x}$$

$$-2K = 1$$
 $-\frac{0}{3} = 1$
 $-0 = 3$
 $0 = -3$

8. 2008 BC Exam - #3 (Calculator Active)

X	h(x)	h'(x)	h"(x)	h'''(x)	$h^{(4)}(x)$
l	11	30	42	99	18
2	80	128	488	448	<u>584</u> 9
3	317	<u>753</u>	1383	3483 16	1125 16

Let h be a function having derivatives of all orders for x > 0. Selected values of h and its first four derivatives are indicated in the table above. The function h and these four derivatives are increasing on the interval $1 \le x \le 3$.

- (a) Write the first-degree Taylor polynomia) for h about x = 2 and use it to approximate h(1.9). Is this approximation greater than or less than h(1.9)? Explain your reasoning.
- (b) Write the third-degree Taylor polynomial for h about x = 2 and use it to approximate h(1.9).
- (c) Use the Lagrange error bound to show that the third-degree l'aylor polynomial for h about x = 2 approximates h(1.9) with error less than 3×10^{-4} .

(a) center + 2
$$h(2) + h'(2)(x-2)$$

$$180 + 128(x-2) \longrightarrow h(1.9) \approx 80 + 128(1.9-2)$$

$$\approx 67.2$$
Since $h''(x) > 0$, it is concave up on the interval.
So the approximation is less than the actual value.

(b)
$$h(2) + h'(2)(x-2) + h''(2)(x-2)^{2} + h'''(2)(x-2)^{3}$$

 $80 + 128(x-2) + \frac{488(x-2)^{2}}{3} + \frac{448}{3} \cdot \frac{(x-2)^{3}}{3}$
 $80 + 128(x-2) + \frac{241}{3}(x-2)^{2} + \frac{224}{3}(x-2)^{3}$

$$\gamma(1.9) \approx 20 + 120(19-2) + \frac{244}{3}(1.9-2)^2 + \frac{224}{9}(1.9-2)^3 = \frac{1}{167.988}$$

© Lagrange Error Bound =
$$\frac{h^{+}(c)}{4!}$$
 (2-1.9)⁴

$$= \frac{584}{9} (2-1.9)^{4}$$

$$= \frac{3.704 \times 10^{-4}}{4!} = 3.0 \times 10^{-4}$$

9. 2009 BC Exam - #6 - Form B (No Calculator)

The function f is defined by the power series

$$f(x) = 1 + (x+1) + (x+1)^2 + \dots + (x+1)^n + \dots = \sum_{n=0}^{\infty} (x+1)^n$$

for all real numbers x for which the series converges.

- (a) Find the interval of convergence of the power series for f. Justify your answer.
- (b) The power series above is the Taylor series for f about x = -1. Find the sum of the series for f.
- (c) Let g be the function defined by $g(x) = \int_{-1}^{x} f(t) dt$. Find the value of $g\left(-\frac{1}{2}\right)$, if it exists, or explain why $g\left(-\frac{1}{2}\right)$ cannot be determined.
- (d) Let h be the function defined by $h(x) = f(x^2 1)$. Find the first three nonzero terms and the general term of the Taylor series for h about x = 0, and find the value of $h(\frac{1}{2})$.

(a)
$$\frac{2}{2}(x+1)^n$$
 $\frac{|m|}{n+a}\frac{|(x+1)^{n+1}|}{|x+1|^n} = \frac{|m|}{n+a}|(x+1)| = |x+1| < 1$ $R=1$

(b) Sum =
$$\frac{a_1}{1-r} = \frac{1}{1-(x+1)} = \frac{1}{1-x-1} = \frac{1}{x}$$

©
$$g(x) = \int_{-1}^{x} f(t)dt = \int_{-1}^{x} -\frac{1}{t}dt = -\ln|t| \int_{-1}^{x} \frac{1}{t}dt = -\ln|x| + \ln|-1| - \frac{1}{t}dt = -\ln|x| = -\ln|x| = -\ln|x| = -\ln|x|$$

(9)
$$MM = t(X_3-1) =$$

$$\frac{1+(x^2-1+1)+(x^2-1+1)^2+...+(x^2-1+1)^n}{=|1+x^2+x^4|+...+x^2n}$$

$$\sum_{n=0}^{\infty} (x^2)^n$$
 Geometric Series
 $\sum_{n=0}^{\infty} (x^2)^n = \frac{1}{1-x^2}$

$$h(\frac{1}{2}) = \frac{1}{1-(\frac{1}{2})^2} = \frac{1}{1-4} = \frac{3}{4}$$

10. 2010 BC Exam - #6 (No Calculator)

$$f(x) = \begin{cases} \frac{\cos x - 1}{x^2} & \text{for } x \neq 0 \\ -\frac{1}{2} & \text{for } x = 0 \end{cases}$$

The function f, defined above, has derivatives of all orders. Let g be the function defined by $g(x) = 1 + \int_{0}^{x} f(t) dt$.

- (a) Write the first three nonzero terms and the general term of the Taylor series for $\cos x$ about x = 0. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about x = 0.
- (b) Use the Taylor series for f about x = 0 found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at x = 0. Give a reason for your answer.
- (c) Write the fifth-degree Taylor polynomial for g about x = 0.
- (d) The Taylor series for g about x = 0, evaluated at x = 1, is an alternating series with individual terms that decrease in absolute value to 0. Use the third-degree Taylor polynomial for g about x = 0 to estimate the value of g(1). Explain why this estimate differs from the actual value of g(1) by less than $\frac{1}{61}$.

(a)
$$\cos x = \frac{x^{2}(-n^{2})}{(2n)!}$$
 $n=0$: $\frac{(-n^{2})^{2(0)}}{(2n)!} = 0$
 $n=1$: $\frac{(-n^{2})^{2(0)}}{(2n)!} = \frac{x^{2}}{2}$
 $n=2$: $\frac{(-n^{2})^{2(0)}}{(2n)!} = \frac{x^{2}}{2}$

$$\cos x - 1 = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

$$\frac{\cos x - 1}{x^2} = \frac{-1}{2!} + \frac{x^2}{4!} - \frac{x^4}{6!} = \frac{2}{2!} \frac{(-1)^{n+1} x^{2n}}{(2n+2)!}$$
 general perm

(b)
$$f(x) = -\frac{1}{2!} + \frac{x^2}{4!} - \frac{x^4}{6!} + ...$$
 $= -\frac{1}{2} + \frac{1}{24}x^2 - \frac{1}{720}x^4 + ...$
 $f'(x) = -0! + \frac{2}{24!}x - \frac{4}{720}x^3 + ... \Rightarrow f'(0) = 0$

CRITICAL POINT at $f''(x) = \frac{1}{12} - \frac{12}{720}x^2 + ...$
 $f''(x) = \frac{1}{12} - \frac{12}{720}x^2 + ...$
 $f''(0) = \frac{1}{12}$

Positive (corcave up)

 $f(x)$ has a relative maximum $f''(0) > 0$
 $f''(0) > 0$

©
$$g(x) = 1 + \int_0^x f(t) dt = 1 + \int_0^x -\frac{1}{2} + \frac{1}{24} t^2 - \frac{1}{720} x^4 + \dots$$

(d)
$$g(i) = 1 - \frac{1}{2}(i) - \frac{(i)^3}{24.3}$$

$$= 1 - \frac{1}{2} - \frac{1}{24.5}$$

4th term
$$+ x^{5}$$
 $+ (1)^{5}$ to find $120.5 = 120.5$ estimation of error $+ \frac{1}{720.5} = + \frac{1}{120.5} = +$