AP Calculus BC

Unit 10 - Sequences \& Series (Part 2)

Day 5 Notes: Geometric Power Series

We can write a power series for some functions in the form of a geometric series
$\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$, where $|r|<1$. We may have to manipulate $f(x)$ to put it in the form $\frac{a}{1-r}$.

Examples:

1. Write a geometric power series centered at $c=0$ for $f(x)=\frac{3}{2 x-1}$.
2. Find a geometric power series centered at $c=-2$ for $f(x)=\frac{3}{4-x}$.
**Take care of the center first!
3. Write a geometric power series centered at $c=0$ for $f(x)=\frac{4 x-7}{2 x^{2}+3 x-2}$.

Convergence of Geometric Power Series

Let $\sum_{n=0}^{\infty} a r^{n}$ be a geometric power series.

- A geometric series will converge when $|r|<1$.
- If a geometric series is centered at $x=c$ and the radius of convergence is R, the interval of convergence is $(c-R, c+R)$.
- A geometric series will never converge at the endpoints of the interval of convergence.

Examples:

4. Find a power series for $f(x)=\frac{4}{3 x+2}$ centered at $\mathrm{c}=2$. Then find the interval of convergence.
5. Write a geometric power series centered at $c=0$ for $f(x)=\frac{3 x-1}{x^{2}-1}$. Then find the interval of convergence.

AP Calculus BC

Name: \qquad
Unit 10 - Day 5 - Assignment
Find a power series for the function, centered at c, and determine the interval of convergence.

1) $f(x)=\frac{4}{5-x}, c=-2$	2) $f(x)=\frac{3}{2 x-1}, c=2$
3) $f(x)=\frac{1}{2 x-5}, c=0$	4) $f(x)=\frac{4}{3 x+2}, c=2$

5) $f(x)=\frac{3 x}{x^{2}+x-2}, c=0$ 6) $f(x)=\frac{2}{1-x^{2}}, c=0$
