AP Calculus BC Unit 10 – Sequences & Series (Part 2)

Day 4 Notes: Power Series (Part 2)

Properties of Functions Defined by Power Series If $f(x) = a_n(x-c)^n$ has a radius of convergence R > 0, then on the interval (c-R, c+R), f is continuous and differentiable. 1. $f'(x) = \sum_{n=1}^{\infty} na_n(x-c)^{n-1}$ 2. $\int f(x) dx = C + \sum a_n \cdot \frac{(x-c)^{n+1}}{n+1}$ ****The radius of convergence is the same for f(x), f'(x), and $\int f(x) dx$. However, the interval of convergence may differ at the endpoints. Always check

for converge at the endpoints of the interval!

Example 1: Given f(x), find f'(x) and $\int f(x) dx$

a)
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
 b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-4)^n}{n}$

c)
$$\sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^n$$

Example 2: Find the intervals of convergence for f(x), f'(x), and $\int f(x) dx$ if

$$f(x) = \sum_{n=1}^{\infty} \frac{(2x)^n}{n}$$

Example 3: Find the intervals of convergence for f(x), f'(x), and $\int f(x) dx$ if $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} (x-2)^n}{(x-2)^n}$

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} (x-2)^n}{n}$$

<u>Unit 10 – Day 4 Assignment:</u> Find the intervals of convergence for f(x), f'(x), and $\int f(x) dx$ if...

1)
$$f(x) = \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$$
 2) $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^n}{n5^n}$ 3) $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-1)^{n+1}}{n+1}$