
AP Calculus BC 

Unit 10 – Sequences & Series (Part 2) 

 

Day 3 Notes: Power Series (Part 1) 

 
Recall that Maclaurin and Taylor polynomials are finite polynomials that can be used to 

approximate a function )(xf . For example, we found that xexf )(  can be approximated by 
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n  .  The higher the degree of the polynomial, the better the 

approximation.We can go further, because xexf )(  can be represented exactly by the 
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A power series  

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n cxa  is a function of x, and its domain is the set of all x for which the 

series converges.  A series will always converge at its center! 

 

 

 

 

 

 

 

 

 

Definition of power series: 

Let na  be a constant and x be a variable. 

1)  A power series centered at x = 0 takes the form     
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2)  A power series centered at x = c takes the form 
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Convergence of a power series centered at x = c 

One of the following will be true: 

1. The series converges only at x = c.  This means that the radius of 

convergence is 0.  (R = 0) 

2. There exists a number R, R > 0, such that 

 Rcx  the series converges 

 Rcx  the series diverges 

 R is called the radius of convergence. 

 The set of all x for which the power series converges is 

called the interval of convergence. 

3. The series converges absolutely for all x.  This means the radius of           

convergence is  . 



We use the Ratio Test to determine the radius of convergence R. 

Examples: 

1)  At what point is each series centered? 
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2)  Find the radius of convergence (R). 
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The interval of convergence of a power series includes the interval (c – R, c + R).  We must test 

the endpoints separately to determine if they should be included in the interval. 

3)  Find the interval of convergence: 
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AP Calculus BC    Name: ______________________________ 

Unit 10 – Day 3 – Assignment 

 

#’s 1 – 3:  State where the power series is centered. 
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#’s 4 – 6:  Find the radius of convergence of the power series. 
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#’s 7 – 12:  Find the interval of convergence of the power series.  (Be sure to include a check 

for convergence at the endpoints of the interval.) 

7)  

n

n

x














0 2
 

 

 

 

 

 

 

 

 

 

 

8) 






1

)1(

n

nn

n

x
 

9) 


0 !n

n

n

x
 

 

 

 

 

 

 

 

 

 

 

10) 

n

n

x
n














0 2
)!2(  

11) 




 

1

1

5

)5()1(

n
n

nn

n

x
 12) 








1
1

1)(

n
n

n

c

cx
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


