AP Calculus BC
 Unit 10 - Sequences \& Series (Part 2)

Day 3 Notes: Power Series (Part 1)

Recall that Maclaurin and Taylor polynomials are finite polynomials that can be used to approximate a function $f(x)$. For example, we found that $f(x)=e^{x}$ can be approximated by $P_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}$. The higher the degree of the polynomial, the better the approximation. We can go further, because $f(x)=e^{x}$ can be represented exactly by the POWER SERIES $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

Definition of power series:

Let a_{n} be a constant and x be a variable.

1) A power series centered at $x=0$ takes the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots
$$

2) A power series centered at $x=c$ takes the form

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots+a_{n}(x-c)^{n}+\cdots
$$

A power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ is a function of x, and its domain is the set of all x for which the series converges. A series will always converge at its center!

Convergence of a power series centered at $\mathrm{x}=\mathrm{c}$

One of the following will be true:

1. The series converges only at $x=c$. This means that the radius of convergence is $0 . \quad(R=0)$
2. There exists a number $R, R>0$, such that
$|x-c|<R \Rightarrow$ the series converges
$|x-c|>R \Rightarrow$ the series diverges

- R is called the radius of convergence.
- The set of all x for which the power series converges is called the interval of convergence.

3. The series converges absolutely for all x. This means the radius of convergence is ∞.

We use the Ratio Test to determine the radius of convergence R.

Examples:

1) At what point is each series centered?
a. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}$
b. $\sum_{n=0}^{\infty} 3(x+4)^{n}$
2) Find the radius of convergence (R).
a. $\sum_{n=0}^{\infty}(4 x)^{n}$
b. $\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(n+1) 3^{n+1}}$
c. $\sum_{n=0}^{\infty} n!x^{n}$
d. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

The interval of convergence of a power series includes the interval $(c-R, c+R)$. We must test the endpoints separately to determine if they should be included in the interval.
3) Find the interval of convergence:
a. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{(n+1)(n+2)}$
b. $\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{(2 n)!}$
c. $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
\qquad
Unit 10 - Day 3 - Assignment
\#'s 1-3: State where the power series is centered.

1) $\sum_{n=0}^{\infty} n x^{n}$	2) $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{3}}$
3) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-\pi)^{2 n}}{(2 n)!}$	

\#'s 4-6: Find the radius of convergence of the power series.
4) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n+1}$
5) $\sum_{n=1}^{\infty} \frac{(2 x)^{n}}{n^{2}}$
6) $\sum_{n=0}^{\infty} \frac{(2 x)^{2 n}}{(2 n)!}$
\#'s 7 - 12: Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

7) $\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}$	8) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n}$
9) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	10) $\sum_{n=0}^{\infty}(2 n)!\left(\frac{x}{2}\right)^{n}$
11) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}$	

