AP Calculus BC
Unit @ — Sequences & Series (Part 2)

\ Day 2 Notes: Taylor Theorem

Remainder of a Taylor Polynomial

If f{x) is approximated by a Taylor polynomial P,(x), then

f(x)=F,(x)+R, (x)
R
exact approx.  remainder

Therefore, the error in the approximation P,(x) is

Brror = |R,(x)] =/ (=)~ B.(x)

TAYLOR'S THEOREM
If f has n derivatives in an interval containing x = ¢, then for each x
in that interval, there is a number z, between x and ¢, such that

K R, x - c)"+1 . <4 Lagrange form of remainder
n ‘

MoX Yolue (n+1)
on {¢,x%)

Note: If Error= |R, (x)|, then all we need is the maximum value of /"(z) on the interval from

xto c. We don't actually have to find the value of z!

rerninger-
Example 1: Use Taylor’s Theorem to obtain an gpper bound for the errorpf the approximation.
Then calculate the exact value of the error.
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Example 2: Determine the degree of the Maclaurin polynomial required for the error in the
approximation of the function sin(0.75) to be less than 0.001.
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Example 3: Given f(X) = cosx.
LA Example 3: (%)
a) Write a 4 degree Taylor polynomial for f(x) about x = 0.

Sy = cosn O Gostey = O
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b) Use the polynom:ai you found in part (a) to approximate the value of cos(0.2).
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¢) Use Taylor’s Theorem to estimate th@m/error in your apm
wox on [¢,x)=(0,0.8) =1
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