AP Calculus BC

Unit 9 - Sequences \& Series (Part 2)

Day 2 Notes: Taylor's Theorem

Remainder of a Taylor Polynomial

If $f(x)$ is approximated by a Taylor polynomial $P_{n}(x)$, then

Therefore, the error in the approximation $P_{n}(x)$ is

$$
\text { Error }=\left|R_{n}(x)\right|=\left|f(x)-P_{n}(x)\right|
$$

TAYLOR'S THEOREM

If f has n derivatives in an interval containing $x=c$, then for each x in that interval, there is a number z, between x and c, such that $R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1} . \longleftarrow$ Lagrange form of remainder

Note: If Error $=\left|R_{n}(x)\right|$, then all we need is the maximum value of $f^{(n+1)}(z)$ on the interval from x to c. We don't actually have to find the value of $z!$

Example 1: Use Taylor's Theorem to obtain an upper bound for the error of the approximation.
Then calculate the exact value of the error.

$$
e \approx 1+1+\frac{1^{2}}{2!}+\frac{1^{3}}{3!}+\frac{1^{4}}{4!}+\frac{1^{5}}{5!}
$$

Example 2: Determine the degree of the Maclaurin polynomial required for the error in the approximation of the function $\sin (0.75)$ to be less than 0.001 .

Example 3: Given $f(x)=\cos x$.
a) Write $4^{\text {th }}$ degree Taylor polynomial for $\mathrm{f}(\mathrm{x})$ about $\mathrm{x}=0$.
b) Use the polynomial you found in part (a) to approximate the value of $\cos (0.2)$.
c) Use Taylor's Theorem to estimate the maximum error in your approximation.

AP Calculus BC

Name: \qquad
Unit 10 - Day 2 - Assignment
\#'s 1-3: Find the Maclaurin polynomial of degree n for the function.

| 1) $f(x)=e^{2 x}, \quad n=4$ | $f(x)=\frac{x}{x+1}, \quad n=4$ |
| :--- | :--- | :--- |
| 3$) \quad f(x)=\sin \pi x, \quad n=3$ | |

\#'s 4-6: Find the nth Taylor polynomial centered at c.
4) $f(x)=\frac{2}{x^{2}}, \mathrm{n}=4, \mathrm{c}=2$
5)

$$
f(x)=\sqrt[3]{x}, \quad \mathrm{n}=3, \mathrm{c}=8
$$

6)

$$
f(x)=x^{2} \cos x, \quad n=2, c=\pi
$$

\#'s 7 - 8: Use Taylor's Theorem to obtain an upper bound for the error of the approximation. Then calculate the exact value of the error.

7$)$	
$\cos (0.3) \approx 1-\frac{(0.3)^{2}}{2!}+\frac{(0.3)^{4}}{4!}$	$e \approx 1+1+\frac{1^{2}}{2!}+\frac{1^{3}}{3!}+\frac{1^{4}}{4!}$

\#'s 9-10: Determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001 .

$\sin (0.3)$	$10)$	$e^{0.6}$

