Day 1 Notes: Maclaurin & Taylor Polynomials

Recall: We can use the equation of the tangent to a curve at x = c to approximate the value of a function for some *x* near c.

For example, let $f(x) = e^x$. Approximate the value of $e^{0..1}$ using the tangent line at x = 0.

Polynomial approximation uses this logic: If linear approximation is relatively accurate for values of x close to x = c, maybe a quadratic approximation would be better...or maybe a cubic would be even better still... and so on. In fact, polynomial approximations usually give us a larger interval on which the approximation is relatively accurate.

Maclaurin polynomial:

Example 1: Find the Maclaurin polynomial of degree 4 for $f(x) = e^x$. Then use the function to approximate f(0.1).

Example 2: Find a third degree Maclaurin polynomial for f(x) = sin(x).

Taylor polynomial:

TAYLOR POLYNOMIAL

If *f* has *n* derivatives at x = c, then the *n*th Taylor polynomial approximation of *f* at x = c is

$$P_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \frac{f'''(c)}{3!}(x-c)^3 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n$$

Example 3: Find $P_2(x)$ for $f(x) = \sqrt{x}$ at c = 4.

Example 4: Find a second degree Taylor polynomial for $f(x) = x^2 \cos x$ centered at π .

AP Calculus BC Unit 10 – Day 1 – Assignment Name: _____

1) $f(x) = e^{-x}, n = 3$ 3) $f(x) = \frac{1}{x+1}, n = 4$ 2) $f(x) = xe^{x}, n = 4$ 4) f(x) = secx, n = 2	#'s 1 – 4: Find the Maclaurin polynomial of degree n for the function.					
3) $f(x) = \frac{1}{x+1}, n = 4$ 4) f(x) = secx, n = 2	1)			2)		n = 4
3) $f(x) = \frac{1}{x+1}, n = 4$ 4) f(x) = secx, n = 2						
3) $f(x) = \frac{1}{x+1}, n = 4$ 4) f(x) = secx, n = 2						
3) $f(x) = \frac{1}{x+1}, n = 4$ 4) f(x) = secx, n = 2						
3) $f(x) = \frac{1}{x+1}, n = 4$ 4) f(x) = secx, n = 2						
3) $f(x) = \frac{1}{x+1}, n = 4$ 4) f(x) = secx, n = 2						
3) $f(x) = \frac{1}{x+1}, n = 4$ 4) f(x) = secx, n = 2						
3) $f(x) = \frac{1}{x+1}, n = 4$ 4) f(x) = secx, n = 2						
3) $f(x) = \frac{1}{x+1}, n = 4$ 4) f(x) = secx, n = 2						
$f(x) = \frac{1}{x+1}, n = 4$ f(x) = secx, n = 2	3)			4)		
		$f(x)=\frac{1}{x+1},$	n = 4		f(x) = secx,	n = 2

nai centered at	Ľ.					
6)	$f(x)=\sqrt{x},$	n = 4, c = 1				
7) $f(x) = lnx, n = 4, c = 1$						
	6)	$f(x) = \sqrt{x},$				

#'s 5 - 7: Find the nth Taylor polynomial centered at c.

8) $f(x) = e^{-x}, f\left(\frac{1}{2}\right), \text{ problem #1}$	9) $f(x) = lnx, f(1.2), problem \#7$