AP Calculus BC

Unit 9 - Sequences \& Series (Part 2)

Day 1 Notes: Maclaurin \& Taylor Polynomials

Recall: We can use the equation of the tangent to a curve at $x=c$ to approximate the value of a function for some x near c .

For example, let $f(x)=e^{x}$. Approximate the value of $e^{0.1}$ using the tangent line at $x=0$.

Polynomial approximation uses this logic: If linear approximation is relatively accurate for values of x close to $x=c$, maybe a quadratic approximation would be better...or maybe a cubic would be even better still... and so on. In fact, polynomial approximations usually give us a larger interval on which the approximation is relatively accurate.

Maclaurin polynomial:

If f has n derivatives at $c=0$, then

$$
P_{n}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}
$$

is the nth degree polynomial approximation of f at $c=0$.

Example 1: Find the Maclaurin polynomial of degree 4 for $f(x)=e^{x}$. Then use the function to approximate $f(0.1)$.

Example 2: Find a third degree Maclaurin polynomial for $f(x)=\sin (x)$.

Taylor polynomial:

TAYLOR POLYNOMIAL

If f has n derivatives at $x=c$, then the nth Taylor polynomial approximation of f at $x=c$ is

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

Example 3: Find $P_{2}(x)$ for $f(x)=\sqrt{x}$ at $c=4$.

Example 4: Find a second degree Taylor polynomial for $f(x)=x^{2} \cos x$ centered at π.

AP Calculus BC

Name: \qquad
Unit 10 - Day 1 - Assignment
\#'s 1-4: Find the Maclaurin polynomial of degree n for the function.

1) $f(x)=e^{-x}, \quad n=3$
\#'s 5-7: Find the nth Taylor polynomial centered at c.

\#'s 8 - 9: Approximate the function at the given value of x, using the polynomial found in the indicated previous problem.
2)

$$
f(x)=e^{-x}, f\left(\frac{1}{2}\right), \text { problem } \# 1
$$

9)

$$
f(x)=\ln x, f(1.2), \text { problem } \# 7
$$

