AP Calculus BC Midterm Review

Name: \qquad

1. What are all of the horizontal asymptotes of all the solutions of the logistics differential equation $\frac{d y}{d x}=y(16-2 y) ?$
2. $\int \sec ^{5} x \tan ^{3} x d x=$
3. Evaluate the integral: $\int e^{x} \cos x d x$
4. What is the carrying capacity for a population whose growth rate is modeled by $\frac{d P}{d t}=45 P-9 P^{2}$?
5. Evaluate the integral: $\int \frac{5}{x^{2}+8 x+18} d x$
6. Evaluate the integral: $\int \sin ^{3}(x) \cos ^{2}(x) d x$
7. $\int-5 x \cos 2 x d x$
8. $\int \frac{4 x-1}{x^{2}-3 x-40} d x$
9. $\int x \cos \left(2 \pi x^{2}\right) d x$
10. Evaluate the integral: $\int x \sqrt{x+1} d x$
11. Evaluate the integral: $\int 3 x\left(x^{2}-1\right)^{4} d x$
12. $\int \frac{5}{\sqrt{1-16 x^{2}}} d x$
13. Which of the following integrals are divergent?
I. $\int_{2}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2} d x}$
II. $\int_{1}^{\infty} \frac{1}{x} d x$
III. $\int_{2}^{\infty} \cos 2 x d x$
14. What is the value of $\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n}$?
15. Which of the following series converges?
I. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
II. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
III. $\sum_{n=1}^{\infty}\left(\frac{e}{\pi}\right)^{n}$
16. Determine whether the following sequence converges or diverges. If it converges, find its limit.

$$
\left\{\frac{(n-2)!}{(n+1)!}\right\}, n=0,1,2, \ldots
$$

17. Investigate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ for convergence or divergence.
18. Find the third term of the sequence $\left\{\frac{(-1)^{n}\left(2^{n}+1\right)}{n!}\right\}, n=1,2,3, \ldots$
19. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is convergent or divergent. If convergent, classify the series as absolutely convergent or conditionally convergent.
20. Find the number of terms necessary to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$ with an error of less than or equal to 0.001 .
21. Determine if the following sequence converges or diverges. If it converges, find its limit.

$$
\left\{\frac{5 n-1}{3 n+1}\right\}, n=1,2,3, \ldots
$$

22. Determine which series diverges.
a) $\sum_{n=0}^{\infty} \frac{n!}{6 n!-1}$
b) $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$
c) $\sum_{n=0}^{\infty} 5\left(\frac{1}{10}\right)^{n}$
d) $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$
23. Determine if the series converges or diverges. $\sum_{n=1}^{\infty} \frac{3}{(2 n-1)(2 n+1)}$.
24. Determine if the series converges or diverges. $\sum_{n=1}^{\infty}\left(\frac{2 n-1}{3 n+5}\right)^{n}$
25. Which of the following series converge?
I. $\sum_{n=1}^{\infty} \frac{n}{n+5}$
II. $\sum_{n=1}^{\infty} \frac{1}{n-3}$
III. $\sum_{n=1}^{\infty} \frac{1}{n}$
26. What is the radius of convergence for the power series $\sum_{n=0}^{\infty} \frac{(x-5)^{n}}{2 \cdot 3^{n+1}}$?
27. Find the interval of convergence for a power series that is centered at -2 for the function $f(x)=\frac{3}{2-4 x}$.
28. Let f be the function given by $f(x)=\ln (3-x)$. The third-degree Taylor polynomial for f about $x=2$ is
29. Write out the first four terms of the Taylor series for $f(x)=x \cos x$ about $x=0$.
30. The third-degree Taylor polynomial for a function f about $\mathrm{x}=4$ is $\frac{(x-4)^{3}}{512}-\frac{(x-4)^{2}}{64}+\frac{(x-4)}{4}+2$. What is the value of $f^{\prime \prime}(4)$?
31. Let f be a function with $f(3)=2, f^{\prime}(3)=-1, f^{\prime \prime}(3)=6$, and $f^{\prime \prime \prime}(3)=12$. Which of the following is the third-degree Taylor polynomial for f about $x=3$?
32. Find the interval of convergence of the Maclaurin series for $f(x)=e^{-2 x}$.
33. Use the $4^{\text {th }}$ degree Taylor Series for $\sin \mathrm{x}$ about $\mathrm{x}=0$ to determine whether f has a relative minimum, relative maximum, or neither at $\mathrm{x}=0$.
34. If $f(x)=e^{-x^{2}}$. Write the first four nonzero terms of the Taylor series for $\int_{0}^{x} e^{-t^{2}} d t$ about $\mathrm{x}=0$,
