
AP Calculus BC     Name: ____________________________ 

Midterm Review 

 

1.  What are all of the horizontal asymptotes of all the solutions of the logistics differential equation 
𝑑𝑦

𝑑𝑥 
= 𝑦(16 − 2𝑦)? 

 

2.     ∫ 𝑠𝑒𝑐5𝑥𝑡𝑎𝑛3𝑥𝑑𝑥 =  

 

3.    Evaluate the integral:  ∫ 𝑒𝑥𝑐𝑜𝑠𝑥𝑑𝑥 

 

 

4.  What is the carrying capacity for a population whose growth rate is modeled by 

 
𝑑𝑃

𝑑𝑡 
= 45𝑃 − 9𝑃2? 

 

5.  Evaluate the integral:  ∫
5

𝑥2+8𝑥+18
𝑑𝑥 

 

6.  Evaluate the integral:  ∫ 𝑠𝑖𝑛3(𝑥) 𝑐𝑜𝑠2(𝑥)𝑑𝑥 

 

 

7.  ∫ −5𝑥𝑐𝑜𝑠2𝑥𝑑𝑥 

 

 

8.  ∫
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9. ∫ 𝑥𝑐𝑜𝑠(2𝜋𝑥2)𝑑𝑥 

 

 

10.  Evaluate the integral:  ∫ 𝑥√𝑥 + 1𝑑𝑥 

 

 

11.  Evaluate the integral:  ∫ 3𝑥(𝑥2 − 1)4𝑑𝑥 

 

 

12.  ∫
5

√1−16𝑥2
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13.  Which of the following integrals are divergent? 
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15.  Which of the following series converges? 
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16.  Determine whether the following sequence converges or diverges.  If it converges, find its 

limit. 
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17.  Investigate 
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18.  Find the third term of the sequence ,
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19.  Determine whether the series 
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 is convergent or divergent.  If convergent, classify 

the series as absolutely convergent or conditionally convergent. 

 

20.  Find the number of terms necessary to approximate the sum of the series 
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21.  Determine if the following sequence converges or diverges.  If it converges, find its limit. 
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22.  Determine which series diverges. 
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23.  Determine if the series converges or diverges. 


 1

.
)12)(12(

3

n nn
 



 

24.  Determine if the series converges or diverges. 
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25.  Which of the following series converge? 
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26. What is the radius of convergence for the power series 
 









0
132

5

n
n

n
x

? 

 

 

27.   Find the interval of convergence for a power series that is centered at -2 for the function 

x
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28.  Let f  be the function given by ( ) ln(3 )f x x  .  The third-degree Taylor polynomial for f  about 

2x   is 

 

29.  Write out the first four terms of the Taylor series for f(x) = xcosx about x = 0.  

 

30.  The third-degree Taylor polynomial for a function f about x = 4 is 
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31.  Let f  be a function with (3) 2, (3) 1, (3) 6,f f f      and (3) 12.f    Which of the 

following is the third-degree Taylor polynomial for f  about 3?x    

 

32.  Find the interval of convergence of the Maclaurin series for 
xexf 2)(  . 

33. Use the 4th degree Taylor Series for sinx about x = 0 to determine whether f has a relative 

minimum, relative maximum, or neither at x = 0. 
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