DIFFERENTIAL EQUATIONS REVIEW

 $(-1)^{2} + (-1) = 0$

- The points (-1, -1) and (1, -5) are on the graph of a function y = f(x) that satisfies the differential equation 1. 2nd Deriv. Test $\frac{dy}{dx} = x^2 + y$. Which of the following must be true?

(A) (1, -5) is a local maximum of f.

- $\frac{d^2y}{dx^2} = 2x + \frac{dy}{dx} = 2x + x^2 + y$
- (B) (1, -5) is a point of inflection of the graph of f.
- $(-1,-1) \rightarrow 2(-1)+(-1)^2+(-1)=-240$ f(x) is conc & M relmax
- (C) (-1, -1) is a local maximum of f(D) (-1, -1) is a local minimum of f.
- (B) (-1, -1) is a point of inflection of the graph of f.
- Let k be a positive constant. Which of the following is a logistic differential equation? 2.

- (A) $\frac{dy}{dt} = kt$ (B) $\frac{dy}{dt} = ky$ (C) $\frac{dy}{dt} = kt(1-t)$ (D) $\frac{dy}{dt} = ky(1-t)$ (E) $\frac{dy}{dt} = ky(1-y)$
- Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = x y$ with initial condition f(1) = 3. What is the approximation for f(2) obtained by using Euler's method with two steps of equal length starting at x = 1?
 - (E) $\frac{21}{4}$
- If P(t) is the size of a population at time t, which of the following differential equations describes linear 4. growth in the size of the population?
 - (A) $\frac{dP}{dt} = 200$ (B) $\frac{dP}{dt} = 200t$ (C) $\frac{dP}{dt} = 100t^2$ (D) $\frac{dP}{dt} = 200P$ (E) $\frac{dP}{dt} = 100P^2$ P = 200 t

Logistic Diff ean

5. A population y changes at a rate modeled by the differential equation $\frac{dy}{dt} = 0.2y(1000 - y)$, where t is measured in years. What are all values of y for which the population is increasing at a decreasing rate?

500

(A) 500 only

- (B) 0 < y < 500 only
- (C) 500 < y < 1000 only

- (D) 0 < y < 1000
- (E) y > 1000

incr & concare J

Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = 2x + y$ with initial condition f(1) = 0. What is the approximation for f(2) obtained by using Euler's method with two steps of equal length, starting at x = 1?

7. For
$$0 < P < 100$$
, which of the following is an antiderivative of $\frac{1}{100P - P^2}$?

(A) $\frac{1}{100} \ln(P) - \frac{1}{100} \ln(100 - P)$

(B) $\frac{1}{100} \ln(P) + \frac{1}{100} \ln(100 - P)$

(B) $\frac{1}{100} \ln(P) + \frac{1}{100} \ln(100 - P)$

(C) $\frac{1}{100} \ln(P) + \frac{1}{100} \ln(100 - P)$

(A)
$$\frac{1}{100} \ln(P) - \frac{1}{100} \ln(100 - P)$$

(B)
$$\frac{1}{100}\ln(P) + \frac{1}{100}\ln(100 - P) = A(100 - P) + B(P)$$

 $P = 100: |P| = B(100)$
 $P = 100: |P| = B(100)$
 $P = 100: |P| = B(100)$
 $P = 100: |P| = A(100)$

(C)
$$100 \ln(P) - 100 \ln(100 - P)$$

(D)
$$\ln(100P - P^2)$$

(E)
$$\frac{1}{50P^2 - \frac{P^3}{3}} = \frac{\beta = 1/100}{100}$$

8. Which of the following is the solution to the differential equation $\frac{dy}{dx} = e^{y+x}$ with initial condition $y(0) = -\ln 4$?

(A)
$$y = -x - \ln 4$$

(B)
$$y = x - \ln 4$$

$$(C) y = -\ln(-e^x + 5)$$

(D)
$$y = -\ln(-e^x + 3)$$

(E)
$$y = \ln(-e^x + 3)$$

$$\frac{dy}{dx} = e^{x} \cdot e^{x}$$

$$\frac{dy}{e^{y}} = e^{y} dx$$

$$\int e^{y} dy = \int e^{x} dx$$

$$-e^{-1} = e^{x} + C$$

$$1(0) = -104$$

$$= e^{-(-104)} = e^{0} + C$$

$$-e^{-104} = 1 + C$$

$$-4 = 1 + C$$

$$-4 = 1 + C$$

$$V_{1n} = e^{-1} = e^{x} = 5$$

$$V_{1n} = V_{1n} = e^{x} = 5$$

(A)
$$y = e^{\frac{x^2}{2} - 2}$$

(B)
$$y = e^{\frac{2}{x^2}}$$
 (C) $y = -\frac{2}{x^2}$

$$(D) \quad y = \frac{2}{6 - x^2}$$

(E)
$$y = \frac{6-x^2}{2}$$
 $y = \frac{1}{2} \times 4$ $y = \frac{$

What is the particular solution to the differential equation
$$\frac{dy}{dx} = xy^2$$
 with initial condition $y(2) = 1$?

(A) $y = e^{\frac{x^2}{2}}$

(B) $y = e^{\frac{x^2}{2}}$

(C) $y = -\frac{2}{x^2}$

(D) $y = \frac{2}{6-x^2}$

(E) $y = \frac{6-x^2}{2}$

(D) $y = \frac{1}{4} = \frac{1}{4}x^2 + C$

(E) $y = \frac{6-x^2}{2}$

(E) $y = \frac{6-x^2}{2}$

(D) $y = \frac{1}{4} = \frac{1}{4}x^2 + C$

(E) $y = \frac{6-x^2}{2}$

What is the general solution to the differential equation $\frac{dy}{dr} = \frac{1}{r^2 - 7r + 10}$?

(A)
$$\ln|(x-2)(x-5)| + C$$

(D)
$$\frac{1}{3} \ln \left| \frac{x-2}{x-5} \right| + C$$

$$\ln \frac{dy}{dx} = \frac{1}{x^2 - 7x + 10}?$$
(D) $\frac{1}{3} \ln \left| \frac{x - 2}{x - 5} \right| + C$

$$\forall = \int \frac{-1/3}{X - 2} dx + \int \frac{1/3}{X - 5} dx$$

 $\int dy = \sqrt{\frac{1}{2-7x+10}} dx$

(B)
$$\frac{1}{3}\ln|(x-2)(x-5)| + C$$

$$(E) \frac{1}{3} \ln \left| \frac{x-5}{x-2} \right| + C$$

(E)
$$\frac{1}{3} \ln \left| \frac{x-5}{x-2} \right| + C$$
 $V = -\frac{1}{3} \ln \left| x-2 \right| + \frac{1}{3} \ln \left| x-5 \right| + C$

$$\frac{1}{(x-2)(x-5)} = \frac{A}{x-2} + \frac{B}{x-5} (C) \frac{1}{3} \ln \left| \frac{2x-7}{(x-2)(x-5)} \right| + C$$

For
$$x > 0$$
, $\frac{d}{dx} \int_{1-t^2}^{\sqrt{x}} \frac{1}{1+t^2} dt =$

$$\frac{1}{1+(\sqrt{x})^2} = \frac{1}{1+\chi^2} \cdot \frac{d}{d\chi} = \frac{1}{1+\chi^2} \left(\frac{1}{2\sqrt{x}}\right)$$

$$(A) \frac{1}{2\sqrt{x}(1+x)}$$

(B)
$$\frac{1}{2\sqrt{x}(1+\sqrt{x})}$$
 (C) $\frac{1}{1+x}$ (D) $\frac{\sqrt{x}}{1+x}$ (E) $\frac{1}{1+\sqrt{x}}$

(C)
$$\frac{1}{1+1}$$

(D)
$$\frac{\sqrt{x}}{1+x}$$

$$(E) \ \frac{1}{1+\sqrt{x}}$$

The number of antibodies y in a patient's bloodstream at time t in increasing according to a logistic differential equation. Which of the following could be the differential equation?

$$(A) \frac{dy}{dt} = 0.025t$$

(B)
$$\frac{dy}{dt} = 0.025t(5000 - t)$$

(C)
$$\frac{dy}{dt} = 0.025y$$

(D)
$$\frac{dy}{dt} = 0.025(5000 - y)$$

(D)
$$\frac{dy}{dt} = 0.025(5000 - y)$$
 (E) $\frac{dy}{dt} = 0.025y(5000 - y)$

(calculator active) 13.

At time t = 0 years, a forest preserve has a population of 1500 deer. If the rate of growth of the population is modeled by $R(t) = 2000e^{0.23t}$ deer per year, what is the population at time t = 3?

$$\int_0^3 2000e^{-23t} = 8041 + 1500 = 10,141$$

X 14.	X	f
	1	

x	f'(x)
1	0.2
1.5	0.5
2	0.9

The table gives values of f'(x), the derivative of a function f. If f(1) = 4 what is the approximation to f(2) obtained by using Euler's method with a step size of 0.5?

$$\begin{array}{c|cccc} x & y & dy|dx & dy & 4.80 \\ \hline 1 & 4 & 0.2 & 0.2(.5) = .1 \\ 1.5 & 4.1 & 0.5 & 0.5(0.5) = 0.25 \\ 2 & (4.35) & 0.5 & 0.5(0.5) = 0.25 \\ \end{array}$$

FREE RESPONSE

15.

A population is modeled by a function P that satisfies the logistic differential equation

$$\frac{dP}{dt} = \frac{P}{5} \left(1 - \frac{P}{12} \right). \quad \frac{dP}{d\tau} = \frac{1}{12} P \left(12 - P \right) \quad \text{Capacity} = \frac{P}{12} \left(12 - P \right)$$

(a) If
$$P(0) = 3$$
, what is $\lim_{t \to \infty} P(t)$?
If $P(0) = 20$, what is $\lim_{t \to \infty} P(t)$?

- (b) If P(0) = 3, for what value of P is the population growing the fastest?
- (c) A different population is modeled by a function Y that satisfies the separable differential equation

$$\frac{dY}{dt} = \frac{Y}{5} \left(1 - \frac{t}{12} \right).$$

Find Y(t) if Y(0) = 3.

(a)
$$P(0) = 3$$
, $\lim_{t \to \infty} P(t) = 12$ carrying capacity.
 $P(0) = 20$, $\lim_{t \to \infty} P(t) = 12$

(a)
$$\frac{dy}{dt} = \frac{y}{5}(1 - \frac{t}{12})$$

$$\int \frac{dy}{dt} = \int \frac{5}{5}(1 - \frac{t}{12}) dt$$

$$Iny = \int \frac{5}{5} - \frac{t}{120} dt^{2} + C$$

$$Iny = \frac{5}{5}t - \frac{1}{120}t^{2} + C$$

$$V(0) = 3$$

$$In3 = \frac{5}{5}t(0) - \frac{1}{120}t(0)^{2} + C$$

$$C = In3$$

$$V(0) = \frac{5}{5}t - \frac{1}{120}t^{2} + In3$$