DERIVATIVES AND THEIR APPLICATIONS REVIEW

NO CALCULATOR

1. If
$$y = \sin^3 x$$
, then $\frac{dy}{dx} =$

 $(Sinx)^3$ $3(Sinx)^2(cosx)$

(A) $\cos^3 x$ (B) $3\cos^2 x$

(C) $3\sin^2 x$ (D) $-3\sin^2 x \cos x$ (E) $3\sin^2 x \cos x$

Implicit lift. 2. If $\arcsin x = \ln y$, then $\frac{dy}{dx} = \frac{(4)}{\sqrt{1-x^2}} = \frac{1}{4} \frac{dy}{dx} = \frac{(4)}{\sqrt{1-x^2}} = \frac{1}{4} \frac{dy}{dx}$

(A)
$$\frac{y}{\sqrt{1-x^2}}$$
 (B) $\frac{xy}{\sqrt{1-x^2}}$ (C) $\frac{y}{1+x^2}$ (D) $e^{\arcsin x}$

(E) $\frac{e^{\arcsin x}}{1+x^2}$

3. The function f is defined by $f(x) = \frac{x}{x+2}$. What points (x, y) on the graph of f have the property that the line tangent to f at (x, y) has slope $\frac{1}{2}$? What points (x, y) on the graph of f have the property that the $\frac{dy}{dx} = \frac{(x+2)(1)-(x)(1)}{(x+2)^2} = \frac{x+2-x}{(x+2)^2} = \frac{2}{(x+2)^2}$

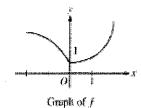
(A) (0, 0) only (B) $\left(\frac{1}{2}, \frac{1}{5}\right)$ (C) (0, 0) and (-4, 2) (D) (0, 0) and $\left(4, \frac{2}{3}\right)$ (E) none $\pm 2 = \chi + 2$ 4. What is the slope of the line tangent to the polar curve $r = 1 + 2\sin\theta$ at $\theta = 0$? Since $0 = \chi = -4$, $\chi = 0$ (A) 2 (B) $\frac{1}{2}$ (C) 0 (D) $-\frac{1}{2}$ (E) -2

 $X = (1+2\sin\theta)(\cos\theta)$ $Y = (1+2\sin\theta)(\sin\theta)$

$$\frac{dy}{dx} = \frac{(2\cos\theta)(\sin\theta) + (1+2\sin\theta)(\cos\theta)}{(2\cos\theta)(\cos\theta) + (1+2\sin\theta)(-\sin\theta)} = \frac{(2)(1) + (1+e)(0)}{(2)(1) + (1+e)(0)} = \frac{1}{2}$$

5.

KU7



The function f, whose graph is shown at the left, is defined on the interval $-2 \le x \le 2$. Which of the following statements about f is false?

(A) f is continuous at x = 0.

(B) f is differentiable at x = 0. b) c cusp cat X = 0

(C) f has a critical point at x = 0.

(D) f has an absolute minimum at x = 0.

(E) The concavity of the graph of f changes at x = 0.

Conc. down to concave up

6.

The graph of f, the derivative of f, is shown at the left. Which of the following statements must be true

The graph of f has a point of inflection at x = -2. The graph of f is concave down for 0 < x < 4.

The graph of f is concave down for 0 < x < 4.

The graph of f is concave f is concave f and f is concave.

The graph of f is concave.

(E) $\frac{3x^2 + 12x + 11}{(x+3)^2}$

(B) $\frac{2}{5\sqrt{1/5}} + \frac{15}{r^4}$

(C) $\frac{2}{5 e^{1/5}} - \frac{3}{5 e^4}$

(D) $\frac{2x^{1/5}}{5} + \frac{15}{5}$

(E) $\frac{2x^{1/5}}{5} - \frac{3}{5x^4}$

10. If $y = \frac{1}{2}x^{4/5} + \frac{3}{3}$, then $\frac{dy}{dx} =$

 $(A) \frac{2}{5x^{1/5}} + \frac{15}{x^6}) dy = \frac{1}{2} (\frac{4}{5}) x^{-1/5} + 15x^{-1/6}$

= 2 + 15 5x1/5 + vu

Let f be a function that is twice differentiable on -2 < x < 2and staisfies the conditions in the table. If f(x) = f(-x). what are the x-coordinates f the points of inflection in the graph of f on -2 < x < 2?

point of infliction (C)
$$x = 0$$
 and $x = 1$

Oct $X = 1$

(A) $x = 0$ only
(B) $x = 1$ only
(D) $x = -1$ and $x = 1$

(D) $x = -1$ and $x = 1$

Which of the following is the equation of the hope cot line tangent to the graph of $x^2 - 3xy = 10$ at the point (1, -3)? $2x + (-3)(y) + (-3x)(\frac{3y}{6x}) = 0$

(A)
$$y+3 = -11(x-1)$$
 $-3x \frac{dy}{dx} = -2x+3y$
(B) $y+3 = -\frac{7}{3}(x-1)$ $\frac{dy}{dx} = -\frac{2x+3y}{-3x}$

(E) none

(D)
$$y+3=\frac{7}{3}(x-1)$$
 $-2(1)+3(-3)$

(E) $y+3=\frac{11}{3}(x-1)$ $-3(1)$

= $\frac{11}{3}$ Slope

(E)
$$y+3=\frac{11}{3}(x-1)$$
 = $\frac{11}{3}$ Slope

11. A function f has first derivative given by $f'(x) = x(x-3)^2(x+1)$. For what values of x does f have a relative maximum?

(A) -1 only
$$X=0$$
 $X=3$ $X=-1$
(B) 0 only critical pts

$$(E)$$
 -1, 0, and 3

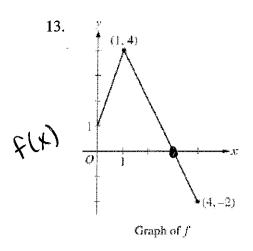
12.
$$\underbrace{\lim_{h \to 0} \frac{\arcsin(a+h) - \arcsin(a)}{h}}_{\text{(A)}} = 2, \text{ which of the following could be the value of } a?$$

darisin(a) = 2

$$1 = 2\sqrt{1-x^{2}}$$

$$\frac{1}{2} = \sqrt{1-x^{2}}$$

$$\frac{1}{2} = \sqrt{1-x^{2}}$$



The graph of the function f, consisting of two line segments, is shown in the figure at the left. Let g be the function given by g(x) = 2x + 1, and let h be the function given by h(x) = f(g(x)). What is the value of h'(1)?

$$(A)$$
 -4

(B) -2

(C) 4
$$g(1) = 2(1) + 1$$

 $g(1) = 3$

(E) nonexistent

chain rule
$$\rightarrow$$
 h'(x) = f'(g(x)) · g'(x)
h'(1) = $f'(3)$ · (2)

$$\left(-\frac{2-4}{4-1}\right)(2) = \left(-\frac{7}{3}\right)(2) = -\frac{1}{4}$$

Which of the following is true about the curve $x^2 - xy + y^2 = 3$ at the point (2, 1)? 14.

(A)
$$\frac{dy}{dx}$$
 exists at (2, 1), but there is no tangent line at that point.

$$2x + (-1)(y) + (-x)(\frac{dy}{dx}) + 2y\frac{dy}{dx} = 0$$

$$\frac{dy}{dx}(-x + 2y) = -2x + y$$

(B)
$$\frac{dy}{dx}$$
 exists at (2,1), and the tangent line at that point is horizontal.

(C)
$$\frac{dy}{dx}$$
 exists at (2, 1), and the tangent line at that point is neither horizontal nor vertiant $\frac{dy}{dx} = \frac{-2x+y}{-x+2y}$

(D)
$$\frac{dy}{dx}$$
 does not exist at (2, 1), and the tangent line at that point is vertical.)

$$=-2(2)+1$$

(E)
$$\frac{dy}{dx}$$
 does not exist at (2, 1), and the tangent line at that point is horizontal.

$$= \begin{pmatrix} -2 + 211 \end{pmatrix}$$

$$= \begin{pmatrix} -3 \end{pmatrix} \text{ und}$$

The function g is given by $g(x) = 4x^3 + 3x^2 - 6x + 1$. What is the absolute minimum value of g on the closed Vert. 15. interval [-2, 1] check critical pts &

$$9'(\chi) = 12\chi^{2} + \omega\chi - \omega$$
(C) 0
(D) 2

$$-\frac{3}{4}$$

$$9(X) = 12X^{2} + (ex - 6)$$

$$6(2x^{2} + x - i)$$

$$6(2x - i)(x + i) = 0$$
16.

If
$$x = t^2 - 1$$
 and $y = \ln t$, what is $\frac{d^2y}{dx^2}$ in terms of t ?

at is
$$\frac{d^2y}{dx^2}$$
 in terms of t ?

(A)
$$-\frac{1}{2t^4}$$
 (B) $\frac{1}{2t^4}$ (C) $-\frac{1}{t^3}$ (D) $-\frac{1}{2t^2}$ (E) $\frac{1}{2t^2}$

$$\frac{dy}{dx} = \frac{1}{2t^{2}} = \frac{1}{2t^{2}} \Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{-t^{-3}}{2t} = \frac{-1}{2t^{4}}$$

$$= \frac{1}{2t^{-2}}$$

a	$\lim_{x\to a} f(x)$	$\lim_{x\to a^+} f(x)$	f(a)
-1	4	6	4
0	_3	<u> </u>	5
	21	2	2)

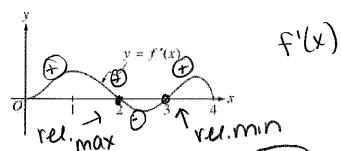
The function f has the properties indicated in the table above. Which of the following must be true?

- (X) f is continuous at x = -1
- (8) f is continuous at x = 0

(C) f is continuous at
$$x = 1$$
 blc $\lim_{x \to 0} = \lim_{x \to 0} = f(x) = 2$

- (E) f is differentiable at x = 1.

18.



The figure above shows the graph of f', the derivative of the function f. If f(0) = 0, which of the following could be the graph of f?

