2006 AP® CALCULUS AB Question 6

The twice-differentiable function f is defined for all real numbers and satisfies the following conditions: f(0) = 2, f'(0) = -4, and f''(0) = 3.

- (a) The function g is given by $g(x) = e^{ax} + f(x)$ for all real numbers, where a is a constant. Find g'(0) and g''(0) in terms of a. Show the work that leads to your answers.
- (b) The function h is given by $h(x) = \cos(kx) f(x)$ for all real numbers, where k is a constant. Find h'(x) and write an equation for the line tangent to the graph of h at x = 0.

(a)
$$g(x) = e^{ax} + f(x)$$
 $g'(x) = (e^{ax})(a) + f'(x)$
 $g'(x) = (e^{ax})(a) + f'(0)$
 $g'(0) = e^{a(0)}(a) + f'(0)$
 $g''(0) = ae^{a(0)}(a) + f''(0)$
 $g''(x) = ae^{ax} + f'(x)$
 $g''(x) = ae^{ax} + f''(x)$
 $g''(x) = ae^{a(0)}(a) + f''(x)$
 $g''(x$

(n(a) (0,2) < point of tangency

AP Calculus Unit 3 – Rules of Differentiation

Day 6 Notes: Derivatives of Inverse Functions

Given a function, f(x), the inverse function, $f^{-1}(x)$, is numerically defined to be

the function that results from switching the domain & range of f(x).

Graphical Representation of the Inverse.

Analytical Representation of the Inverse.

$f^{-1}(x)$ is reflection of $f(x)$ over	Graphical Representation of the inversi
9-10	$f^{-1}(x)$ is reflection of $f(x)$ over $y=X_{\circ}$

Analytical Representation of the Inverse
$$f(f^{-1}(x)) = X$$

$$f^{-1}(f(x)) = X$$

Ŋ

Consider the two functions, f(x) and g(x), represented numerically below. Answer the questions that follow.

x	f(x)	g(x)
-2	3	1
1	2	-2

Complete the table of values below.	Complete the table of values below.	Find the value of $f(-2)$.
$\begin{array}{c cc} x & f^{-1}(x) \\ \hline 3 & -2 \\ \hline \end{array}$	$ \begin{array}{c cc} x & g^{-1}(x) \\ \hline & -2 \\ \hline & -2 \end{array} $	f(1) = 2
Find the value of $f^{-1}(f(1))$. $f^{-1}(2) = 1$	Find the value of g^{-1} $\left(f^{-1}(2)\right)$	Find the value of $f^{-1}(g(g^{-1}(1)))$. $f^{-1}(g(g^{-1}(1))) = Undefined$
		Name of the last o

Finding a Formula for the Derivative of an Inverse

Differentiate both sides of the equation below.

Chain Ru $f[f^{-1}(x)] = x$

$$f'[f-1(x)]' = f'[f-1(x)]' = 1$$

Suppose that
$$f(x) = 3x + 2$$
 and $f'(-2) = 3$. What is the value of $[f^{-1}(-4)]$?

$$[f'(-4)]' = f'[f'(-4)] = f'(-2) = [3]$$

Given to the right is a table of values for f, g, f', and g'. Use the values in the table to find each indicated value in the boxes below.

· · · · · ·				
x	f	g	f'	g'
-2	1	2	0	3
0	-4	-3	-1	2
1	3	-2	2	1
3	1	1	-3	-2

Find the value of
$$[g^{-1}(-2)]'$$
. = $g'[g^{-1}(-2)]$
= $g'[g]$ = $g'[g]$

Find the value of $[g^{-1}(1)]'$. Then, find the equation of the line tangent to the graph of g^{-1} when x = 1.

$$\frac{1}{g'[g'(i)]} = \frac{1}{g'(3)} = \frac{1}{-2}$$
Slope of tangent

$$g^{-1}(1) = 3$$
 (1,3) point of targent

$$\frac{(1,3)}{y-3} = -\frac{1}{2}(\chi-1)$$
 Since $f'(2) < 0$, then $f(x)$ is decreasing at $\chi=2$.

Estimate the value of f'(2). Based on this value, what conclusion can be reached about the graph of fwhen x = 2? Explain your reasoning.

$$(1,3) = (3,1)$$
 $f'(2) \approx \frac{1-3}{3-1} = \frac{-2}{2} \approx \boxed{1}$