AP Calculus AB Unit 3 – Day 6 – Assignment

Name: A hower key *

(0,1)

MULTIPLE CHOICE

1. Which of the following statements can be made about the graph of the function

$$h(x) = \frac{\ln(\cos x)}{\tan x} \text{ when } x = \frac{\pi}{2} = \frac{\pi}{2}$$

A. The graph of h(x) is increasing.

B. The graph of h(x) is decreasing.

C. No conclusion can be made about the graph of h(x).

D. The graph of h(x) has a horizontal tangent.

-(tan(\frac{\pi}{2}))^2 (sec(\frac{\pi}{2}))^2 (Incos\frac{\pi}{2})

2. Consider the graph of f(x) to the right to determine which of the following statements is/are true.

If
$$f'(x) = 0$$
 when $x = 3$. $f'(x) = Vndef$ b/c cusp.

On the interval (-4,5) there are three values of x at which f(x) is not differentiable.

All and III only

- B. I and II only
- C. III only
- D. I, II and III

3. Let
$$f(7) = 0$$
, $f'(7) = 14$, $g(7) = 1$ and $g'(7) = \frac{1}{7}$. Find $h'(7)$ if $h(x) = \frac{f(x)}{g(x)}$.

$$h'(x) = g(x)f'(x) - f(x)g'(x)$$
 $(g(x))^2$

$$h'(7) = g(7)f'(7) - f(7)g'(7)$$

$$= (1)(14) - (0)(4) = 14-0 = 14$$

$$(1)^{2}$$

- 4. The graph to the right shows data of a function, H(t), which shows the relationship between temperature in °C (y-axis) and the time in hours (x-axis). What does the value of H'(6) represent?
 - H'(6) represents the temperature after 6 hours measured in °C.
 - B. H'(6) represents the rate at which the temperature is changing after 6 hours measured in °C.
 - H'(6) represents the temperature after 6 hours measured in °C per hour
 - D. H'(6) represents the <u>rate at which the temperature</u> is changing after 6 hours measured in °C per hour.

5. The graph of $h(x) = 2\sqrt{x+4} + 2$ is pictured below.

What is the value of $[h^{-1}(6)]$?

A.
$$\frac{1}{4}$$
 $\left[h^{-1}(b) \right] = \frac{1}{h'(h^{-1}(b))}$

C. 4

 $\frac{1}{4}$
 $\frac{1}$

A.
$$2xe^{x}$$
B. $x(x+2e^{x})$
C. $xe^{x}(x+2)$
D. $2x+e^{x}$

$$\frac{(2x)(e^{x}) + (x^{2})(e^{x})(1)}{2xe^{x} + x^{2}e^{x}}$$

$$\frac{2xe^{x} + x^{2}e^{x}}{xe^{x}(2+x)}$$

7. The function f is pictured to the right. At which of the following values of x is f defined and continuous but not differentiable.

$$\int_{0}^{\infty} x = 2$$

III.
$$x = 5$$

- A II only
 - B. I only
 - C. II and III only
 - D. I and II only

FREE RESPONSE

The table below differentiable and g(x), and at selected the table of answer each of below.

			1.0	
x	f(x)	f'(x)	g(x)	g'(x)
0	3	-1	2	5
1	3	2	3	-3
2	5	3	1	-2
3	10	4	0	-1

shows values of functions, f(x)their derivatives values of x. Use values below to the questions

a. Approximate the value of f'(1.5)? Explain why your answer is a good approximation of f'(1.5). (1,3) (2,5)f'(1.5).

$$f'(1.5) \approx \frac{5-3}{2-1} \approx \frac{2}{1} \approx \boxed{2}$$

f'(1.5) is a good approximation because we used two points close to x=1.5 on the secont line. Since the slope of the secont line should closely parallel, then this approx gives us close to the slope of the targent line.

b. If
$$B(x) = \sqrt{g(x)}$$
, what is the equation of the tangent line drawn to $B(x)$ when $x = 1$?

$$B(x) = [g(x)]^{1/2} \qquad B(1) = \sqrt{3}$$

$$B'(x) = \frac{1}{2}[g(x)]^{-1/2}[g'(x)]$$

$$= \frac{1}{2}[g(1)]^{-1/2}[g'(1)]$$

$$= \frac{1}{2}(\frac{1}{\sqrt{3}})(-3) = \frac{-3}{2\sqrt{3}} \Rightarrow S|DP|C|DF$$
Tangent

c. If $A(x) = x^2 \ln (f(x))$, what is the value of A'(2)? What does this result say about the behavior of the graph of A(x) when x = 2? Give a reason for your answer.

$$A'(x) = (2x)(\ln f(x)) + (x^2)(\frac{f'(x)}{f(x)})$$

$$A'(2) = (2(2))(\ln (f(2)) + (2^2)(\frac{f'(2)}{f(2)})$$
then the of A(1) increase incr

Since A(2)>0, then the graph of A(X) is increasing when X=2.

d. Find the value of $[g^{-1}(3)]'$. Then, find the equation of the line normal to the graph of $g^{-1}(x)$ at x=3. $\begin{bmatrix} g^{-1}(3) \end{bmatrix}' = \frac{1}{g'(g^{-1}(3))} = \frac{1}{g'(1)} = \frac{1}{g'$

$$y-1=3(x-3)$$