AP Calculus AB Unit 3 – Day 4 WARM-UP Name: Answer Key*

Find the derivative of each function.

1)
$$\cot(5x)$$
 $f'(x) = -\csc^2(5x) \cdot (5)$
= $-5\csc^2(5x)$

2)
$$tan(3x^2 + x)$$
 $f'(x) = SCC^2(3x^2 + x) \cdot (0x + 1)$

$$\frac{1}{(0x+1)(Sec^2(3x^2 + x))}$$

3)
$$csc(8x+1)$$
 $F'(x) = -csc(8x+1) cot(8x+1) (8)$
 $-8 csc(8x+1) cot(8x+1)$

4)
$$\sec(9x^2)$$
 $f'(x) = \sec(9x^2) + \tan(9x^2) \cdot (18x)$

$$\frac{18x}{8} \sec(9x^2) + \tan(9x^2)$$

5)
$$\sin^2(5x+1)$$
 [$\sin(5x+1)$]² $2 [\sin(5x+1)]^1 (\cos(5x+1)(5))$ [$10 \sin(5x+1) \cos(5x+1)$]

6)
$$\cos^{2}(3x^{2}+5x)$$
 [$\cos(3x^{2}+5x)$]²
 $2[\cos(3x^{2}+5x)]^{1}$ ($-\sin(3x^{2}+5x)$)($6x+5$)
 $-(2x+10)\cos(3x^{2}+5x)\sin(3x^{2}+5x)$

Day 4 Notes: Finding the Derivative of the Natural Exponential & Logarithmic Functions

Differentiation Rule for Natural Exponential Functions

If
$$f(x) = e^{g(x)}$$
, then $f'(x) = e^{g(x)}$, $g'(x)$

Find the derivative of each of the following functions.

$$f'(x) = e^{\sin x} \qquad f(x) = e^{2x+3}$$

$$f'(x) = e^{\sin x} (\cos x)$$

$$= (\cos x)(e^{\sin x})$$

$$f'(x) = 3e^{2x}$$

$$f'(x) = 3e^{2x}$$

$$f'(x) = 3e^{2x}$$

$$f'(x) = (2x+3)(3x)$$

$$f(x) = \frac{e^{5x}}{3x^2} = \frac{(3x^2)(e^{5x})(5) - (e^{5x})(6x)}{(3x^2)^2}$$

$$= \frac{15x^2e^{5x} - (0xe^{5x})}{9x^4} = \frac{3xe^{5x}(5x-3)}{3x^3} = \frac{e^{5x}(5x-3)}{3x^3}$$

Differentiation Rule for Natural Logarithmic Functions

If
$$f(x) = \ln [g(x)]$$
, then $f'(x) = \frac{g'(x)}{g(x)}$.

Find the derivative of each of the following functions.

$$f'(x) = \frac{2}{2x-3}$$

$$f'(x) = \frac{1}{3x^2+2x}$$

$$f'(x) = \frac{2}{3x^2+2x}$$

$$f'(x) =$$

MATH (8:nDeriv()

Finding Values of Derivatives Using the Graphing Calculator

For each of the functions below, find the value of f'(x) at the indicated value of x using the graphing calculator. Then, determine if the function is increasing, decreasing, has a horizontal tangent or has a vertical tangent. Give a reason for your answer.

Function	Value of $f'(a)$	Is $f(x)$ increasing or decreasing, or does $f(x)$ have a horizontal or a vertical tangent?
1.	a = -2	since f'(-2)<0,
$f(x) = 3e^x \sin x$		then flx) is
f(x) = 3c Bin x	f'(-2) = -0.538	decreasing at $x=-a$.
2.	a = 1	Since f'(1) >0, then
$f(x) = 3e^x \sin x$	F'(1)=11.268	f(x) is increasing at x=1.
3.	$a = \frac{\pi}{3}$	Since f'(17/3) 60,
$f(x) = \frac{\ln(\cos x)}{x^2}$		then f(x) is
$\int (x)^{-1} x^{2}$	$f'(\frac{\pi}{3}) = -0.372$	decreasing at X=17/3.
4.	$a = \pi$	Since f'(TT) is
$\ln(\cos x)$	(Error on Cau)	undefined, men
$f(x) = \frac{\ln(\cos x)}{x^2}$	$f'(\pi) = Vndefined$	f(x) has a vertical tangent at x=17.
5.	a=0	. J
tan(0.34x)		Since $f'(0) > 0$, then
$f(x) = e^{\tan(0.34x)}$	N11)	ful) is increasing
	f'(0)=0.340	at X=0.
6.	a = 1	Since f'(i)=0,
$f(x) = 5\sin^2(\ln x)$		then f(x) has
	f'(1) = 0	a novinontal tangent
-(: 1)2	I	N- V=1

Derivative = RATE OF CHANGE!

We already understand the derivative to be the **SLOPE OF THE TANGENT LINE**. Slope is a <u>rate</u>. Therefore, the derivative of a function actually represents the <u>RATE AT WHICH A</u> <u>FUNCTION IS CHANGING</u>.

-,	The number of people entering a concert can be modeled by the function $f(t) = 560e^{\sin t}$,
/.	where t represents the number of hours after the gates are open.

- Find the values of $f(\frac{1}{2})$ and $f'(\frac{1}{2})$. Using correct units, explain what each value represents a. in the context of this problem
- in the context of this problem. $f(\frac{1}{2}) = 560e^{\sin(\frac{1}{2})} = 904.48$; After half an hour 904 people have entered the concert. $f'(\frac{1}{2}) = 193.76$; After half an hour, people

are entering the concert at a rate of 193 people per hour.

How many people have entered the concert 2 hours after the gates are opened? Is the number of people entering increasing or decreasing at this time? Justify your answer.

f(2) = 1390.24; Two hours after the gates opened, 1390 people have entered the Concert.

f'(2) = -578.55; Since f'(2) <0, then the number of people entering a his after rate of the gates opening is decreasing at a stopper

8. After being poured into a cup, coffee cools so that its temperature, T(t), is represented by the function $T(t) = 70 + 110e^{-t/2}$, where t is measured in minutes and T(t) is measured in degrees Fahrenheit.

What is the temperature of the coffee 5 minutes after it has been poured into the cup?

a. T(5) = 79.03°F. 5 minutes after the coffee was poured, the temperature is 79.03°F.

Is the temperature decreasing faster 1 minute after it is poured or 3 minutes after it is poured? Give a reason for your answer.

- b. T'(1) = -33.36 Fper minute
 - T'(3) = -12.27°F per minute

after the coffee is poured vic It'(1) > |T'(3) |.

R CALCULATOR