Day 2 Notes: Understanding the Derivative from a Graphical & Numerical Approach

Graphical behaviors of f(x) based on the value of the derivative, f'(x):

1) If $f'(\alpha) > 0$ (positive), then the graph of f(x) is INCREASING at x = a.

2) If f'(a) < 0 (regative), then the graph of f(x) is DECREASING at x = a.

3) f(x) has a <u>relative maximum</u> if f'(a) = 0 and f'(x) changes from positive to negative.

4) f(x) has a <u>relative minimum</u>, if f'(a) = 0 and f'(x) changes from negative to positive.

Example 1: The graph of a function, g(x), is pictured to the left. Identify the following characteristics about the graph of the derivative, g'(x). Give a reason for your answers.

The interval(s)	g'(x) is negative when g(x) is decreasing
where $g'(x) < 0$ g'(x) is negative	$(-4-2) \cup (1,\infty)$
The interval(s)	gi(x) is positive when g(x) is increasing
where $g'(x) > 0$ g'(x) is positive	$(-\infty, -4) \cup (-2, 1)$
The value(s) of x where $g'(x) = 0$	g'(x)=0 when we have relative maximum or relative maximum or relations.
	X = -4, $X = -2$, $X = 1$

*use the x-values for your intervals

Estimating the Derivative:

Numerically, the value of the derivative at a point can be **ESTIMATED** by finding the <u>SLOPE</u> of the <u>SECANT LINE</u> passing through two points on the graph on either side of the point for which the derivative is being estimated.

Example 2: Use the table below to fill out the chart.

x	-3	0	`1	4	6	10
f(x)	2	1	-3	0	-7	2

x – Value	Estimation of Derivative	Is the function Increasing, Decreasing or at a Relative Maximum or Relative Minimum	Equation of the tangent line at this value of x.
0	(-3,2) & $(1,-3)f'(0) \approx \frac{-3-2}{13} \approx \frac{-5}{4}$	decreasing	P.O.T -> (O,1) S.O.T ~ -5/4 [Y-1=-年(X)]
1	$(0,1) \stackrel{?}{q} (4,0)$ $f'(1) \approx \frac{0-1}{4-0} \approx \frac{-1}{4}$	decreasing	P.O.T \rightarrow (1,-3) S.O.T \approx -1/4 $\boxed{y+3=-\frac{1}{4}(x-1)}$
4	$(1,-3) \notin (6,-7)$ $f'(4) \propto \frac{-7-3}{6-1} \approx -\frac{4}{5}$	decreasing	P.O.T > (4,0) S.O.T ~ -415 Y = -\frac{1}{5}(X-4)
6	$(4,0) \neq (10,2)$ $f'(0) \approx \frac{2-0}{10-4} \approx \frac{2}{6} \approx \frac{1}{3}$	Increasing	P.O.T -> (6,-7) S.O.T $\approx \frac{1/3}{(y+7)}$ $= \frac{1}{3}(x-6)$

Definition of the Normal Line:

The normal line is the line that is perpendicular to the tangent line at the point of tangency.

Example 3: The graph of the derivative, h'(x), of a function h(x) is pictured below. Identify the following characteristics about the graph of h(x) and give a reason for your responses.

	10 lates ' 5 har excelsion 100 11(1) = 5
The interval(s) where <u>h(x)</u> is	If h(x) is increasing, then h(x) >0. If h(x) >0, then its graph's Above the x-Axis.
increasing	
	$\frac{ (-2,1) \cup (3,\infty) }{ (-2,1) \cup (3,\infty) }$
The interval(s) where $h(x)$ is	If h(x) is decreasing, then h'(x) <0.
decreasing	If h'(x) <0, then the graph is BFLOW the x-as
5.00	$(-\infty, -2) \cup (1, 3)$
The value(s) of x where $h(x)$ has a	n(x) has rel max when h'(x) = 0 and h'(x) changes from positive to negative.
relative maximum.	
	X= $h(x)$ has religion when $h'(x)=0$ and
The value(s) of x where $h(x)$ has a	h(x) has ret min when h(x) =0 and h(x) changes from regative to positive
relative minimum.	THE RESIDENCE AND THE PROPERTY OF THE PROPERTY
	X=-2 $=$ $=$ $=$ $=$ $=$ $=$ $=$
If $h(-1) = \frac{1}{2}$, what is the equation of	P.O.T -> (-1,1/2)
the (angent line drawn to the graph	$5.0.T \rightarrow h'(-1) = 5$ (from graph)
of $h(x)$ at $x = -1$?	And the same of th
	$ y-\frac{1}{2}=5(x+1) $
TOLION OF THE PROPERTY OF	$P.O.T \rightarrow (2,-3)$
If $h(2) = -3$, what is the equation of the normal line drawn to the graph	S.O. T → h'(2) = -2 (from graph)
of $h(x)$ at $x = 2$?	slope of rormal (12)
	$y+3=\pm(x-2)$