AP Calculus
Unit 2 — Conceptualizing the Derivative

Day 2 Notes: Understanding the Derivative from a Graphical &
Numerical Approach

Graphical behaviors of f{x) based on the value of the derivative, £'(x):
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LS Example 1: The graph of a function, g(x), is pictured to the
k@ 1, 6) left. Identify the following characteristics about the graph of
(3 “A the derivative, g'(x). Give a reason for your answers.
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Estimating the Derivative:
Numerically, the value of the derivative at a point can be ESTIMATED by finding the SLOPE
of the SECANT LINFE passing through two points on the graph on either side of the point for f)

which the derivative is being estimat

Example 2: Use the table below to fill out the chart.
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Definition of the Normal Line:
The normal line is the line that is perpendicular to the tangent line at the point of tangency. }
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Example 3: The graph of the derivative, /'(x) , of a function A(x) is pictured below. Identify the
following characteristics about the graph of A(x) and give a reason for your responses.
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